A Logico-Categorical Semantics of XML / DOM

Carlos Henrique Cabral Duarte
carlos.duarte@computer.org

BNDES
Av. Repitblica do Chile 100, Centro
Rio de Janeiro, RJ, 20001-970, Brazil

Abstract. The efforts of the World Wide Web
Consortium in defining and recommending the
adoption of an extensible markup language,
XML, and a document object model, DOM, have
been received with enthusiasm by the software
development community. These recommendations
have been continuously adopted as a practical
way to define and realise two party interaction.
Here we describe an attempt at providing a
logico-categorical semantics for these language and
model, which seems to be useful in the rigorous
development of open distributed systems.

Keywords: Extensible Markup Language, Docu-
ment Object Model, Formal Methods, Distributed
Systems, Software Engineering.

1 Introduction

The efforts of the World Wide Web Consor-
tium (W3C) in defining and recommending the
adoption of an Extensible Markup Language
(XML) [8] and a Document Object Model
(DOM) [6] have been received with enthu-
siasm by the software development commu-
nity. XML is a subset of the Standard Gener-
alised Markup Language (SGML) [14] meant
to be used on the World Wide Web (WWW)
[4]. Like the Hypertext Markup Language
(HTML) [3], XML was designed not only to
ease the development of software tools but also
to interoperate with other WWW standards.
DOM, on the other hand, is a public applica-
tion programming interface (API) for manip-
ulating HTML and XML documents. These
language and model are now becoming de facto
standards in the design and implementation of

Universidade Estacio de S&
Rua do Bispo 83, Rio Comprido
Rio de Janeiro, RJ, 20261-902, Brazil

open distributed systems and frameworks.

XML documents describe semi-structured
data objects possibly associated to some pro-
cessing instructions. As textual specifications
written in a markup language, there is a stan-
dard way of writing and reading each docu-
ment. That is, there is a standard grammar
and interpretation for XML documents. In
addition, each software client reading a XML
document is expected to present the same data
to any application, despite their final visual ap-
parency. This means that there is no standard
presentation style for XML documents.

DOM defines a public interface for progra-
matically accessing and manipulating XML
documents and their parts. The model per-
mits document parts to be created, modified
and erased, while allowing applications to nav-
igate from one document element to another,
following its current structure. DOM is lan-
guage independent and implementation neu-
tral, but programming language bindings have
been defined so as to enable the use of this
model in developing real systems.

Both XML and DOM have actually been de-
fined in a rigorous but rather informal manner.
The applications of this language in develop-
ing distributed systems based on point to point
communication, wherein the understanding of
messages and other exchanged structured doc-
uments must be precisely the same in both
communication ends, allied to the necessity of
defining language bindings to make effective
use of this model, suggest that it would be in-
teresting to count upon a formal semantics as

their alternative definition. The existence of
a logical semantics, for instance, would per-
mit the rigorous verification of DOM based
distributed system properties, as well as it
would facilitate the implementation of auto-
mated testing tools.

XML and DOM congregate a particular set
of characteristics which naturally leads to the
development of a logical semantics that is also
categorical, in the sense of applying Category
Theory in Computer Science as advocated by
Joseph Goguen [13]. More specifically, the
first of these characteristics is that many XML
documents represent the same data object,
but are in fact different by definition. Since
what really matters in their manipulation, due
to the independence of presentation, is the ob-
ject of their representation, this indicates the
existence of an equivalence notion. Secondly,
documents have structure and are inherently
related by containment or inclusion. Their
relationships are clearly functional, composi-
tional, admit identity and can be used a basis
for defining equivalence up to abstracting
document representation. That is, we have
all the ingredients for defining a category of
XML document representations. In fact, what
one can read out of these observations is that
the emphasis in a definition of XML can be
placed in capturing relations between objects
(documents and their structure) rather than
in simply capturing the objects themselves.
This is precisely what the application of
Category Theory is about. Mutatis mutandis,
the same rationale above is valid concerning
DOM, programming interfaces and their
respective implementations.

Contribution. In this paper, we propose
a logico-categorical semantics addressing
both XML and DOM. This semantics, which
can be regarded as our original contribution
here, consists in a particular application of a
first-order many-sorted branching time logical
system developed as part of our previous work
[10]. This seems to be a relevant contribution
since it allows us to specify and reason about
the specific class of open distributed systems

underlying the web, contributing to better
understand their static and dynamic aspects.
We are not aware of other formalisms treating
both W3C recommendations simultaneously.

Related work. A substantial number of
formal models have been developed to clarify
the application of XML in particular contexts.
These can be roughly classified in mathe-
matical, logical and categorical models. The
main purpose of the algebras developed by
by Frasincar, Houben and Pau [12], among
many others, is the mathematical study of
XML query formulation and optimisation.
A logical notion of satisfiability is developed
by Arenas, Fan and Libkin in [2] to verify
the consistency of XML documents with
respect to type definitions with constraints.
A type theoretic approach is proposed by
Brown, Fuchs, Robie and Wadler [5] to check
whether or not documents conform with type
definitions endowed with keys. Alagic and
Bernstein [1] develop a categorical method
for schema integration that applies to XML
document type definitions. The complexity of
the aforementioned models seems to increase
with the number of potential applications.

Organisation. Sections 2 and 3 provide
brief descriptions of XML and DOM respec-
tively; Section 4 outlines the proposed logico-
categorical semantics; Section 5 presents some
conclusions and prospects for future research.

2 Brief Description of XML

Physically, each XML document is a textual
specification composed by syntactic unities
called entities. Entities may contain unparsed
and parsed data, the latter being formed by
markups or other specific symbols. Define
the logical structure of each document: dec-
larations, comments, elements, character ref-
erences to the ISO/IEC 10646 set and pro-
cessing instructions (PIs) to potential appli-
cations. These logical structures are repre-
sented using markup tags that are delimited
by < and > but which may also internally use

other punctuation marks. The document en-
tity contains the whole textual specification,
which necessarily includes a root element.
FElements define data objects, which are
identified by names (tokens beginning with a
letter or some punctuation marks). Names
are used as part of tags to delimit the respec-
tive data object contents. Elements may have
attributes, which can only hold plain values.
Conversely, the organisation of element con-
tents is forest like, meaning that they may also
contain lists of disjoint nested elements. An
example document appears in Fig. 1.

<?xml version="1.0"7>

<!-- card.xml —-->

<CARD>

<HOLDER>CARLOS H C DUARTE</HOLDER>
<NUMBER>1234567890123456</NUMBER>
<BRAND>Supercard</BRAND>
<EXPIRYDATE>31/02/2003</EXPIRYDATE>
</CARD>

Fig. 1: A credit card XML document.

The CARD element in Fig. 1 is struc-
tured, having HOLDER, NUMBER, BRAND and
EXPIRYDATE as members. The first two lines
of that document contain a declaration and a
comment, respectively to allow proper auto-
mated processing and to facilitate human com-
prehension. Not all XML documents have such
a simple structure. Differently from CARD, the
XML document in Fig. 2 is more complex,
defining a BOOK with an empty EDITOR ele-
ment, without specified value. In addition, the
BOOK element is labelled by the value of an at-
tribute, LABEL. In general, attributes are used
to hold meta-data as is the case of LABEL.

The structure and content of classes of docu-
ments may be specified using type definitions.
A document type definition (DTD) is named
and may have a specification separated from
documents of that type. Such definitions can
be referenced in client documents using the
DOCTYPE markup. A DTD consists in a list
of declarations of notations, fixed entities, en-
tity types or attribute lists. Element contents

<?xml version="1.0"7>

<!-- book.xml -->

<!DOCTYPE BOOK SYSTEM "book.dtd">
<BOOK LABEL="BROOKS1995">
<TITLE>The Mythical Man-Month:

Essays in Software Engeneering</TITLE>
<AUTHOR>Frederick P. Brooks Jr.</AUTHOR>
<EDITION>2nd</EDITION>
<EDITOR/>
<PUBLISHER>Addison-Wesley Pub Co.</PUBLISHER>
<YEAR>1995</YEAR>
</BOOK>

Fig. 2: A book XML document.

and attribute values can be defined as blocks of
characters or using a variant of regular expres-
sion syntax. Element members and their order
can be determined. DTDs may be parame-
terised, with parameters marked with a pre-
ceding #, and have conditional sections, which
are considered or not as part of the definition
according to the fulfilment of defining condi-
tions. An example DTD, satisfied by a class
of book documents including that in Fig. 2, is
presented in Fig. 3.

<?xml version="1.0"7>
<!-- book.dtd -->
<!ELEMENT BOOK
(TITLE, AUTHOR, EDITION, PUBLISHER, YEAR) >

<!ELEMENT TITLE (#PCDATA) >
<!ELEMENT AUTHOR ANY >
<!ELEMENT EDITION (#PCDATA) >
<!ELEMENT EDITOR ANY >
<!ELEMENT PUBLISHER ANY >
<!ELEMENT YEAR (#PCDATA) >
<!ATTLIST BOOK

LABEL CDATA #REQUIRED >

Fig. 3: A DTD defining valid book documents.

Using the ENTITY markup, definitions of en-
tities can be specified, whose name may be
placed between the delimiters & and ; to imply
in a content expansion when the document is
processed. These may rely on external defini-
tions, which are specified through the SYSTEM
markup followed by a literal (quoted string)

pointing to the actual location of the defining
document. An example of a composed docu-
ment appears in Fig. 4.

<?xml version="1.0"7>

<!-- order.xml -->

<!ENTITY CHCDCARD SYSTEM '"card.xml'">
<!ENTITY MYTHBOOK SYSTEM "book.xml">
<0ORDER>

&CHCDCARD; &MYTHBOOK;
<PRICE>39.00</PRICE>
<CURRENCY>USD</CURRENCY>

</0RDER>

Fig. 4: A book order XML document.

A XML document is said to be well-formed
only if satisfying the following conditions:

1. it complies with the XML grammar
specified in [8];

2. it satisfies some well-formedness con-
straints, such as to have matching start
and end tags in the definition of each
element;

3. all referenced entities are well-formed.

As a consequence of the third item above, doc-
uments cannot be directly or indirectly recur-
sive. To any violation of well-formedness in
reading an XML document corresponds a fatal
error, which is not recoverable. The document
in Fig. 1, for instance, is well-formed. A docu-
ment is said to be valid if it is well-formed and
complies with a given D'TD. To each violation
of validity in reading an XML document corre-
sponds a recoverable error. For example, the
document in Fig.2 is valid.

Although XML was designed to give rise to
documents legible by humans, the language
definition is based on client document proces-
sors and corresponding computer applications.
The error handling treatment mentioned above
is to be followed by any client and applica-
tion. When these are implemented as part of
a WWW browser, the W3C suggestions con-
cerning the definition of presentation style sep-
arated from each document should be taken

into account. The W3C has even proposed a
stylesheet language (XSL) [9] and style trans-
formations (XSLT) [7] to address this issue,
but the study of the respective recommenda-
tions is out of the scope of our current work.

3 Brief Description of DOM

DOM defines a set of specifications for rep-
resenting documents and their composition.
Each document is represented as a tree of
passive objects, not just as a data structure,
so that it can present some observable be-
haviour. Documents and their components are
addressed in an object-based way: they may
have attributes representing state and meth-
ods that give rise to their behaviour. The
respective hierarchy of class interfaces can be
regarded as if organised by an inheritance re-
lation, although this view is not mandatory.
Note that, viewed in this way, DOM defines an
abstract class structure that has to be mapped
into a real programming language and refined
with the implementation of each interface in
order to support real applications. It is in this
sense that DOM is considered just as an API.

The current DOM definition does not spec-
ify how entire documents are created [6]. As-
suming that a certain document object ex-
ists, the creation of its components follows
the so-called factory pattern, which is spec-
ified as a method in the scope of the doc-
ument object specification. For instance, to
create a CARD element within the scope of an
ORDER document, it would be necessary to call
the createElement method of ORDER provid-
ing CARD as an argument.

Each component of a document and doc-
uments themselves are regarded as com-
plying with a primary specification called
Node. It defines querying methods, such as
nodeType, a type being that of documents,
entities and other constructs; nodeName,
which depends on the node type; and
nodeValue. The specification also defines
the methods nodeParent, childrenNodes
and ownerDocument, all with intuitive mean-

ing; firstChild and lastChild, for recov-
ering the first and the last elements in the
list of nodes returned by childrenNodes;
previousSibling and nextSibling, for navi-
gating in the structure where the node may be
connected to; hasChildNodes to verify if the
node is structured, and attributes, returning
any node attributes. A set of updating meth-
ods with intuitive behaviour is also defined:
insertBefore, replaceChild, removeChild,
appendChild, and cloneNode.

Apart from the features inherited from Node,
the Document specification defines doctype,
which points to a possibly existing DTD;
element, pointing to the root element of the
document; and implementation, which is ex-
plained below. In addition to those inherited
from Node, the specification also defines fac-
tory methods for creating the various different
types of constructs listed in the previous sec-
tion, such as elements and declarations.

Although the main purpose of XML is
the definition of entire documents, in their
manipulation it is often found convenient
to deal with document parts, which would
not strictly satisfy the main production rule
of the XML grammar. DOM specifies
DocumentFragment as a subtype of Node
endowed with copy/modify/paste methods,
which allow their use in the role of clip-
boards. Other auxiliary object types with
an intuitive semantics, such as NodeList and
NamedNodeMap, are also defined by DOM.

The W3C recommendation concerning
DOM is divided into three parts addressing
the DOM core, XML and HTML. An inter-
face for querying a specific implementation
concerning the supported version of either
of these languages is supplied as part of the
model, DOMImplementation with method
hasFeature. The distinguished support pro-
vided by each kind of implementation derives
from the interpretation of tags, which is fixed
in HTML and variable in XML. The model
also specifies an interface for error handling,
DOMException with a table of exception codes.
These two implementation related issues are
out of the scope of the present study.

Other standard document components are
captured in the DOM core through the spec-
ifications Element, Attr, Text and Comment.
The XML specifics are represented as part
of the interfaces Notation, CDATASection,
DocumentType, Entity, EntityReference
and ProcessingInstruction. These directly
inherit the features of Node, the exceptions
being Text, Comment and CDATASection, for
which this relation is indirect due to the ex-
istence of CharacterData, a virtual interface
to support the HTML specifics as well. A dia-
grammatic representation of the abstract class
structure implied by DOM appears in Fig. 5.

4 Semantics of XML/DOM

4.1 Core Semantics of XML

We develop our work based on the insight that
documents which are not well-formed do not
have a failure free semantics. To propose a
failure semantics that could capture the sub-
tleties of ill formed documents would be a very
complex task, which is not our purpose to de-
velop here. Therefore, we only deal with well-
formed documents in this paper. We also take
advantage of the fact that valid documents are
well-formed and treat all of them without dis-
tinction. That a document is valid comply-
ing with a certain DTD is reflected here just
in the additional obligation to ensure that all
type definition restrictions are satisfied by the
document interpretation.

A careful inspection of the XML notions
shows that semantically not all of them have
the same status. For instance, PIs do not af-
fect how a document is understood, but just
how it is to be dealt with. Their treatment
clearly falls into the domain of pragmatics.
The definition of entities, notations and com-
ments serve just as syntactic sugar to ease hu-
man comprehension or automated processing.
Consequently, these are ignored in the sequel.

The semantically rich part of XML remain-
ing to be treated here is that of elements with
their types and contents; attributes with their
plain values; and entire documents. These def-

NamedNodeMap NodelList
0.N maps lists 0..N
0.N | l0.N
1E§&f5tsii$’§ Node 1.1 _raises 0.N | ponmException
Attr Notation
0.N
possesses
1..1 Document
. Fragment
Element contains 0..N
0..N
0.N supports 1.1
Document PP Implementation
CharacterData
0..N specifies
[T 1
Comment Text
f 0.1
CDATASection EntityReference Entity DocumentType
0.N | refers_to | 1..1

Fig. 5: Abstract class structure defined by DOM.

initions a prior: do not have associated be-
haviour and can be represented through clas-
sical first-order theory presentations.

We provide in Fig. 6 two theory presenta-
tions describing elements and values. These
rather simple presentations become important
in the interpretation of other XML constructs.
The presentation ELEMENT specifies a sort
symbol to stand for the universe of elements,
elem, with | denoting the bottom element. To
each element may be associated a type through
a specific function, type. The constants of sort
type serve as names for classes of elements and
additional restrictions can be placed on these
elements depending on whether or not there is
a type definition constraining that particular
class. VALUE specifies not only a sort sym-
bol representing the plain values of attributes

and some elements, val, but also a function nil
denoting a distinguished bottom value.

It is in the interpretation of structured data
objects that most of the complexity of XML
lies. In our logical view of XML inspired
by DOM, elements and values are generically
called nodes. The defining presentations of
these two notions are imported in the inter-
pretation of nodes so that the respective sym-
bols can be used in our axioms. Nodes have a
forest like ordered structure. Due to this fact,
we also import a theory presentation defining
natural numbers (which is omitted here), nat,
and specify two functions, void and member,
denoting respectively a bottom node and an
ordered membership function. For each node
z and natural number n, member(z,n) returns
the n-th member of x or void if it does not ex-

ist. Each node may either hold an element and
possibly define finitely many member nodes
through member or hold a plain value, the
reason for including in NODE the functions
node_elem and node_val. The resulting pre-
sentation appears in Fig. 7.

Nodes may be atomic or have some struc-
ture. Axioms (3.1-3.3) define the relation-
ships between bottom nodes, elements and
values. Non-bottom nodes must be associ-
ated either to a value or to an element (3.5)
and structured nodes necessarily stand for ele-
ments (3.6). In order to capture the structural
properties of nodes, we introduce in NODE an
auxiliary symbol heir and the corresponding
defining axioms. For a pair of nodes z and
y, heir(z,y) = 1 iff y is a descendant of x
in its tree like structure. Axiom (3.10) says
that the members of a node define its direct
descendants. Axiom (3.11) specifies that the
descendants of a node are also defined by the
descendants of its members. These two ax-
ioms provide an inductive definition for heir.
As constraints, we have (3.9) saying that nodes
cannot be directly recursive; (3.12) stating the
no node sharing property of trees; and (3.13)
requiring that only descendants allowed by our
inductive definition be considered as such.

Elements may be associated to attributes in
a many to one relationship. The presentation
ATTRIBUTE in Fig. 8 defines an attr_elem
function capturing this relationship. The func-
tion attr_val returns a value for each attribute.

Concluding our definitions, we formalise
documents in Fig. 8. We consider that they
are endowed with a function to return each

Presentation ELEMENT (ELEM)
sorts elem, type
functions | : — elem

type : elem — type

Presentation VALUE (VAL)

sorts val
functions nil : — val

Fig. 6: Semantics of Elements and Values.

Presentation NODE

imports NAT, ELEM, VAL

sorts node

functions void : — node
node_val : node — val
node_elem : node — elem
member : node X nat — node
heir : node x node — nat

axioms z,y, z : node; e : elem;m,n : nat

node_val(void) = nil (3.1)
node_elem(void) = L (3.2)
member (void, 0) = void (3.3)
In - member(z,n) = void (3.4)
x # void — (3.5)
(node_elem(x) = L + node_val(x) # nil)
member(zx,1) # void = node_elem(z) # L (3.6)
member(z,m) = void — (3.7
(Vn-m < n — member(z,n) = void)
heir(z,y) =0V heir(z,y) =1 (3.8)
heir(z,z) =0 (3.9)
(3n - member(xz,n) =y Ay # void) — (3.10)
heir(z,y) =1
(3n - member(z,n) =y Ay # void) — (3.11)
(Vz - heir(y, z) =1— heir(z,2)=1)
heir(z,y) = 1 A heir(z,2) =1 > (3.12)
y =2V heir(y,z) =1V heir(z,y) =1
heir(z,y) = 1 — (3n - member(z,n)=y) V (3.13)

(3z - heir(z,z) = 1 A heir(z,y) = 1)

Fig. 7: Semantics of Nodes.

document root node. According to (5.1), doc-
uments must define a tree like structure, even
if consisting only in the void node.

The semantics of XML can be formalised
as an amalgamation of all the previous the-
ory presentations. This construction can also
be explained in categorical terms, considering
the imports statement in each presentation as
a definition of a family of identity morphisms
including the named objects into their enclos-
ing presentations. The resulting structure can
be better visualised in a diagrammatic manner
through the objects and arrows in Fig. 9.

4.2 Semantics of XML Documents

Our core XML semantics can be regarded as a
meta-logical construction when it is used as a
framework for capturing the semantics of par-

Presentation ATTRIBUTE (ATTR)

imports ELEM, VAL

sorts attr

functions attr_elem : attr — elem
attr_val : attr — val

Presentation DocuMENT (DoC)
imports NODE, ATTR

sorts doc

functions doc_node : doc — node
axioms d : doc

member(doc_node(d), 1) = void (5.1)

Fig. 8: Semantics of Attributes/Documents.

ticular documents. In order to illustrate this
application, we return below to the book order
example proposed in Section 2.

We assign a distinct theory presentation to
each document, which imports the whole XML
semantics. Values mentioned in the docu-
ment give rise to constants of sort val. Each
type tag is represented as a constant of sort
type. The elements, attributes, and their hi-
erarchical organisation are captured setting
the functions doc_node, member, node_elem,
node_val, attr_elem, attr_val and type ac-
cordingly. The result is not a compact pre-
sentation, but it is an exact representation.

To illustrate this interpretation, we present
in Fig. 10 the BOOK document of Section 2 an-
notated with labels identifying the kind of each
construct therein. We assume the existence of
constants z; of sort node, 1 <4 < 12; v; of sort
val, 1 <7 < 6; tg of sort type, 1 <k < 7; and
aq of sort attr. Values are represented under-
lined and nodes are surrounded by boxes.

LTS

N7

ATTR

VAL ELEM

Fig. 9: Categorical semantics of XML.

<?7xml version="1.0"7>
<!-- book.xml -->
<!DOCTYPE BOOK SYSTEM "book.dtd">

<t1:BO0K ai:LABEL="BRO0OKS1995,, "> 1
<ty :TITLE> *2
The Mythical Man-Month: @3

Essays in Software Engeneering.,

</TITLE>

<ts:AUTHOR> ‘Frederick P. Brooks Jr.,, 5| *
</AUTHOR>

<t :EDITION></EDITION> @6

| <ts:EDITOR/> “s |

<tg : PUBLISHER>
‘Addison—Wesley Pub Co.,, "1

</PUBLISHER>

<t7:YEAR>| 1995,, “!? </YEAR> “!

</BO0K>

z9

Fig. 10: Annotated BOOK document.

Figure 10 comprises a document which gives
rise to a BOOK presentation containing an
import DocC statement and axioms specify-
ing as distinct and non-bottom the constants
{d1 : doc; z; : node;v; : val; ¢y : type; a; : attr}.
The presentation specifies the root book node:

(1)

It is important to mention that we avoid to
over constrain doc_ent in order to allow the
semantic composition of documents, as illus-
trated below. It would be troublesome, for in-
stance, if above x1 were required to be the only
node in the image of this function.

The specified book element e; has just
one attribute a; (LABEL) with value v
(BROOKS1995). This is mapped into the fol-
lowing axioms:

doc_ent(dy) = 1

(2)
(3)
(4)

Now we have to deal with the complex struc-
ture of BOOK. Due to the limited graphical reso-

attr val(a1) = vy
attr_elem(ay) = e;

Vag : attr - attr_elem(az) = e1 — a2 = a1

lution of this paper, it was impossible to make
explicit in Fig. 10 the elements defined by the
document, but we equally need to assume the
existence of the respective constants e; of type
elem, 1 <[< 7, in order to formalise these
document components. The structure of BOOK
is interpreted with the help of the previously
introduced functions member and node_elem:

(5)
(6)

node_elem(z1) = ey

member(z1,0) = x9

member(z1,5) = 11
(8)
Note that (8) is required in order to restrict the
interpretation of BOOK to the nodes in Fig. 10.
Without this kind of equation in the interpre-
tation of each specification, unbound (open)
documents would be admissible. Although in-
teresting, this kind of document is not not ac-
ceptable in XML. Our core semantics, how-
ever, regards them as acceptable because the
axioms in Fig. 7 only require the existence
of an unspecified natural number limiting the
elements of each document (3.4).

The equations above capture only the two
first hierarchical levels of the book document,
containing the elements from TITLE to YEAR.
To represent the whole document, we have
to iterate this process until plain values are
found. For example:

member(x1,6) = void

node_elem(xs) = eg (9)
member(zy,0) = x3 (10)
member(zz,1) = void (11)
node_val(x3) = vo (12)
member(xs3,0) = void (13)

These equations say that the node zo (TITLE)

defines an element ey, which in turn contains
a node z3 holding value v2, the book title.

Most of what remains to be interpreted of
BOOK is uninteresting, a simple repetition of
the cases above. The only exception is the
interpretation of the empty element EDITOR,
which is performed as follows:

node_elem(xg) = es

member(zg,0) = void

ZLa

t, : CARD

Tp

tp : HOLD t.:NUMBER t4:BRAND te :EXPIRY

L

Vg : CHCD

vp:1234

V. : SUPER vq:2003

Fig. 11: Structure of the card document.

The process above may be used to produce
an interpretation for any XML document. For
instance, CARD can be interpreted as presented
in Fig. 11 through a diagrammatic notation,
where nodes are represented using squares, el-
ements as empty circles and values as filled
ones. Although we have omitted this detail
from our examples, the semantics of DTDs can
be produced in the same way. This process
can be formalised through a functor mapping
each XML syntactic construct into new com-
ponents of a theory presentation, which is ini-
tially empty but is gradually augmented by the
interpretation of each document component.
We omit here the definition of this functor,
whose signature is [] : XML x Pres — Pres.

4.3 Compositional Semantics

The semantics above determines a separate in-
terpretation for each given XML document.
One may wonder if some sort of composition-
ality is present in this kind of interpretation.
The answer is affirmative.

To illustrate this, we take the presentations
resulting from the interpretation of CARD and
BOOK described in Section 4.2 and attempt to
compose these objects using presentation mor-
phisms. We recall from [11, 13] that the pre-
sentations and morphisms (functions) adopted
here determine a category Pres. This allows
us to make use of helpful categorical construc-
tions. For instance, the commutative diagram
in Fig. 12 describes the composition of CARD
and BOOK resulting in CARD®x\1, BOOK.

The construction of CARD®BOOK can be
explained by analogy with the process of defin-
ing BOOK from BOOK and Doc. We mentioned
that Doc is imported into BOOK through an
identity morphism (02) such that: (i) a unique
new document with its root node are required
to exist in the target presentation (creation);
(ii) all the constants assumed to exist only in
the target presentation are distinguished from
the image of the values defined in the source
(completion) and (iii) the root of the top level
document becomes a member of the new docu-
ment root (demotion). The definition of CARD
is performed based on a morphism of the same
family (01). Apart from obeying these rules
with respect to Doc, CARD®BOOK must also
be constructed in a minimalist way without
equalising the image of the constants in CARD
and Book. This is ensured by computing
a pushout, a categorical construction defined
here by the morphisms o1 and o9 of the same
family. These are defined in such a way that
the images of Doc imported through CARD
and BOOK are collapsed in a single entity when
they are put together. So we end up with just
one member symbol in CARD®BOOK, which
captures the complex node structure of both
documents. Since the interpretation of each
composite object is defined by the individual
interpretations of its components when com-
bined in the way suggested by our semantics,
we have compositionality.

It is interesting to note that we can iterate
this construction and obtain an interpretation
for another of our example documents, ORDER,
which contains elements defining the price and
currency adopted in an electronic transaction.
These elements are present only in ORDER, the
interpretation of ORDER depicted in Fig. 12.

CARD

PR .

CARD@BOOK—> ORDER

DN e

Book

Doc

Fig. 12: Formal Semantics of our Example.

Presentation DOMATTR

imports BooL, Doc

attributes name, value : val

actions getName, isName(val), getVal, isVal(val),
getSpec, isSpec(bool), setVal(val)

axioms v : val

beg — value = nil (6

setVal(v) V (value = v A X(value = v)) (6

setVal(v) = X(value = v) (6.

getName A name = v — X(isName(v)) (6

getVal A value = v — X(isVal(v)) (6

getSpec A value = v — X(isSpec(v # nil)) (6

Fig. 13: Semantics of DOM attributes.

Another issue related to compositionality is
the possibility of testing the structural equiva-
lence of documents. Again it is feasible to rely
on categorical techniques in this case. Given
two documents, a positive answer for this kind
of question is found if it is possible to deter-
mine two standard theory morphisms mapping
their interpretations into each other in such a
way that the resulting diagram commutes.

4.4 Core Semantics of DOM

When we come to capturing the semantics of
DOM, the rationale concerning the use of pre-
sentations and morphisms is also applicable,
but because DOM objects have observable be-
haviour, we are obliged to make use of the tem-
poral aspects of the adopted logical system.

We define a theory presentation for each
DOM object type. In each of these presen-
tations, the XML semantics is imported; the
attributes of the DOM interface are inter-
preted as attribute symbols and methods are
captured using action symbols, with existing
parameters represented as action arguments.
Note that these steps are performed to pro-
vide a language rich enough for representing
the dynamic properties of the respective DOM
objects through some presentation axioms.

In Fig. 13 we present the interpretation of
attributes in DOM (Attr). The presentation
says that attribute values are initially unde-
fined (6.1), only change if requested (6.2) and
modify subsequently after a request (6.3); and
that attribute names, values and status are re-
turned immediately after any query (6.4-6.6).

5 Final Remarks

In this paper, we have outlined a logico-
categorical semantics for both XML and
DOM, which may be regarded as a formal al-
ternative to their standard informal seman-
tics definitions. Our semantics is structured
in terms of theory presentations of a first-
order many-sorted branching time logical sys-
tem with equality, which were derived from
the W3C recommendations and should be par-
ticularised in the interpretation of each doc-
ument or application with their specific de-
tails. Using this work, it becomes possible to
reason about the static and dynamic aspects
of web-based open distributed systems and
frameworks, manually or by using automated
support. We believe that the most promis-
ing directions for applying this research will
the study of integrating heterogeneous sources
of information over the web and the design of
web-based multimedia systems.

Many other formal models of XML have
been proposed in the literature with specific
purposes. Most of these are based on the use of
mathematical or logical constructions to cap-
ture the studied tree like structure of XML
documents (e.g. [2, 5, 9, 12]). These differ
from our work due to the additional proof-
theoretic treatment given to the XML notions
here, which we consider better suited to sup-
port the rigorous development of software sys-
tems in general. The abstract categorical ap-
proach proposed in [1] keeps many similarities
with our ideas, specifically related to the the
use of morphisms to describe the structure and
collective behaviour of XML based software
systems. In particular, because our work is
based on theory presentations and their mor-
phisms, it is not difficult to see that the in-
duced morphisms (functors) between the cat-
egories of models of these theories possess the
reverse direction of the given morphisms, thus
complying with the definitions in that work.

References

[1] S. Alagic and P. A. Bernstein. A model the-
ory for generic schema management. In Proc.

[2]

[3]

[4]

[5]

[9]

[10]

[11]

[12]

[13]

[14]

8th International Workshop on Database Pro-
gramming Languages (DBPL’01), 2001.

M. Arenas, W. Fan, and L. Libkin. On
verifying consistency of XML specifications.
In Proc. 21th Symposium on Principles of
Database Systems (PODS’02), 2002.

T. Berners-Lee and D. Connolly. Hypertext
Markup Language (HTML) — 2.0. RFC 1866,
MIT/W3C, November 1995.

T. Berners-Lee et al. The World-Wide Web
(WWW). Communications of the ACM,
37(8):76-82, 1994.

A. Brown, M. Fuchs, J. Robie, and P. Wadler.
MSL - a model for W3C XML schema. In
Proc. 10th International World Wide Web
Conference (WWW’01), pages 191-200. ACM
Press, 2001.

W. W. W. Consortium. Document object
model (DOM) level 1 specification. W3C
recommendation, http://w3c.org, October
1998.

W. W. W. Consortium. XSL transformations.
W3C recommendation, http://w3c.org,
November 1999.

W. W. W. Consortium. FExtensible markup
language (XML) 1.0 (second edition). W3C
recommendation, http://w3c.org, October
2000.

W. W. W. Consortium. Extensible stylesheet
language (XSL) 1.0. W3C recommendation,
http://w3c.org, November 2000.

C. H. C. Duarte. Proof-Theoretic Foundations
for the Design of Extensible Software Systems.
PhD thesis, Department of Computing, Impe-
rial College, London, UK, 1998.

J. Fiadeiro and T. Maibaum. Temporal the-
ories as modularisation units for concurrent
systems specification. Formal Aspects of Com-
puting, 4(3):239-272, 1992.

F. Frasincar, G.-J. Houben, and C. Pau.
Xal: An algebra for XML query optimization.
In Z. Zhou, editor, Proc. 13th Australasian
Database Conference (ADC’2002), 2002.

J. A. Goghen. A categorical manifesto.
Mathematical Structures in Computer Sci-
ence, 1(1):49-67, 1991.

I. S. Organization. Information technol-
ogy document description and processing lan-
guages. Technical Report ISO 8879:1986 TC2,
1998.

