
DEPARTMENT OF COMPUTING

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

UNIVERSITY OF LONDON

Proof-Theoretic Foundations for
the Design of

Extensible Software Systems

Carlos Henrique Cabral Duarte

A thesis submitted to the University of London

in partial fulfilment of the requirements for

the degree of Doctor of Philosophy (PhD) and

the Diploma of the Imperial College (DIC)

(1998)

Abstract

Extensible software systems have been increasingly demanded as a means

of supporting in a more faithful way constantly changing user requirements and

also as a necessary logical counterpart to rapidly evolving networking architec-

tures. Such terms as open, reconfigurable, mobile and reflexive have been used

to attempt to describe relevant facets of this kind of reactive system with dynam-

ically varying functionality or structure. In this thesis, we not only characterise

extensible systems but also study their rigorous design.

We advocate a proof-theoretic step-by-step approach to the development

of extensible systems as a means of ensuring correctness, modularity and incre-

mentability. By spelling out their characteristics and identifying corresponding

logical constructions, we present as an original foundational contribution a first-

order branching time logical system that seems to be appropriate as a basis

for specification and verification. Even though our software process approach

is proof-theoretic, we provide both model and proof theories for the proposed

system, studying in the context of general logics important properties such as

soundness, completeness and expressiveness. We argue that other logical sys-

tems proposed in the literature are not adequate to achieve the same desirable

effects in design.

We also study particular software development approaches based on the

actor model, on dynamic sub-classing and on meta-level architectures which

could best underpin the rigorous design of extensible systems. Specific design

principles are proposed in the form of derived inference rules with their applica-

tion guidelines and composability notions are studied in terms of categories of

theory presentations. We show that reasoning about their local properties can

be carried out based only on such constructions but global properties may not

be verified without the additional aid of a rely-guarantee discipline. A series of

helpful theorems and realistic examples are developed to support and illustrate

how our ideas can be effectively applied in practice.

To my family

Acknowledgements

I would like to thank Professor Tom Maibaum, the supervisor of the re-

search leading to this thesis, for his guidance, incentive and for providing physical

and additional financial resources to support my research whenever necessary.

In addition, I wish to acknowledge the support offered by the following peo-

ple, ranging from single words of encouragement to technical comments on my

work, all of which of fundamental importance to push forward my research: Gul

Agha, Maŕıa Victoria Cengarle, Adrian Chung, Stefan Conrad, Theodosis Dim-

itrakos, José Fiadeiro, Marcelo Finger, Fausto Giunchiglia, Vassos Hadzilackos,

Ian Hodkinson, Kamyar Kanami, Marta Kwiatkowska, Ezra Mugisa, Raja Na-

garajan, Valéria de Paiva, Dimitris Raptis, Mark Ryan, Prahladavaradan Sam-

path and Carolyn Talcott.

Androulla Pieri, E. Ann Halford, Denise Grant and Barbara Claxton pro-

vided excellent administrative services during my stay at the Department of

Computing. John Hughes and Hillary Glasman-Deal were of invaluable assis-

tance in improving my spoken and written English language skills through the

classes of the Humanities Programme. I would like to thank them all for their

help and for always maintaining a friendly working environment.

The development of this work at the Imperial College was financially sup-

ported in full by CNPq, the Brazilian National Research Council, research grant

number 200766/94-5. I am also grateful to the Brazilian National Bank of So-

cial and Economic Development (BNDES) for allowing my stay in the United

Kingdom for almost 4 years on leave of absence.

During these years, it would have been impossible to advance in my per-

sonal project without the support and comprehension of Patŕıcia, Matheus and

Carolina. I cannot quantify the numerous occasions in which I unfortunately

had either to leave your enjoyable leisure company or to ignore completely many

of our problems in order to concentrate on my studies alone. This thesis is ded-

icated to you, my beloved family. All these years could also have been more

pleasant for Aracy, Gisele and Thais, my dear mother, sister and niece, if the

physical distance separating us were not as huge. I especially wish to thank you

for your understanding of how important it was for me to conclude this work.

Table of Contents

1 Introduction 1

1.1 What is Extensibility? . 2

1.1.1 A Classification of Software Changes 2

1.1.2 Related Terminology . 4

1.1.3 Approaches to Support Extensibility 4

1.2 Formal Design of Extensible Systems 5

1.2.1 Process Calculi and Extensibility 6

1.2.2 Temporal Logic and Extensibility 8

1.3 Aims of the Thesis . 9

1.4 Outline of the Thesis . 9

2 Proof Theory and Software Development 11

2.1 The Proof-Theoretic Approach 13

2.2 Logic in General . 19

2.3 Classical Propositional Logic . 30

2.4 Propositional Linear Time Logic 40

2.5 Propositional Branching Time Logic 47

2.6 Classical First-Order Logic . 54

2.6.1 Many-Sorted Logic with Equality 58

2.7 First-Order Temporal Logic . 62

2.8 A Particular Model Theory . 72

2.9 Some General Logical Results 77

2.10 Summary and Related Work . 91

3 Designing Open Reconfigurable Systems 93

3.1 Issues in the Design of a Proof Theory for the Actor Model . . . 95

3.2 An Axiomatisation of the Actor Model 96

3.2.1 Representing Actors . 96

3.2.2 Axiomatising Actor Behaviours 102

3.3 Verification of Local Properties 108

i

ii Table of Contents

3.4 Composition of Actor Specifications 111

3.5 A Rely-Guarantee Design Discipline 117

3.6 Verification of Global Properties 121

3.7 A Plethora of Modes of Interaction 130

3.8 Actors and Dynamic Subclassing 136

3.9 Summary and Related Work . 140

4 Reflection and the Design of Meta-Level Architectures 145

4.1 Meta-level Considered Necessary: The Consensus Problem . . . 147

4.2 The Design of Meta-Level Architectures 151

4.3 Computational Reflection . 155

4.4 Summary and Related Work . 156

5 Case Study: Location Management for Mobility 157

5.1 Location Management: Requirements 158

5.2 Location Management in a Formal Setting 159

5.3 Verifying Location Management Properties 166

5.3.1 Location Space . 166

5.3.2 Location Service . 167

5.3.3 Other Properties of the Mobile Architecture 169

5.4 Summary and Related Work . 170

6 Concluding Remarks 173

6.1 Contributions . 173

6.2 Further Work . 175

I Useful Theorems 177

I.1 Classical Propositional Logic . 177

I.2 Propositional Linear Time Logic 178

I.3 Propositional Branching Time Logic 180

I.4 Classical First-Order Logic . 181

I.5 Many-Sorted Logic with Equality 182

I.6 First-Order Temporal Logic . 182

II Remaining Cases in the Proof of Soundness 183

Bibliography 187

Notation Index 201

Subject Index 202

List of Figures

1.1 Evolution of process design languages. 7

2.1 Steps of the development process. 14

2.2 Classical first-order theory of Peano arithmetic 16

2.3 Properties of the development process. 20

2.4 Example of distinct proof calculi styles. 28

2.5 A taxonomy of logical structures. 30

2.6 Specification of the supermarket system in CPL. 38

2.7 Configuration of the supermarket system in CPL. 38

2.8 Specification of the supermarket system in PLTL. 44

2.9 Configuration of the supermarket system in PLTL. 44

2.10 Distinct interpretations of E. 51

2.11 FEFEp→ FEp is not valid in PBTL. 52

2.12 Specification of the supermarket system in PBTL. 53

2.13 Configuration of the supermarket system in PBTL. 54

2.14 Faithful logical system embeddings. 73

2.15 Definition of MSBTL. 81

2.16 Temporal first-order theory of Peano arithmetic. 89

3.1 Specification of integer buffer cells. 97

3.2 Simplified specification of terminals and processors. 115

3.3 Static configuration of the multi-tasking system. 116

3.4 Definition of Reach. 123

3.5 Protocol for ensuring synchrony of reconfigurable objects. 131

3.6 Buffer cells and related dynamic subclasses. 137

3.7 Static configuration of the dynamic subclasses of Cell. 138

3.8 Specification of the distinct dynamic subclasses of Cell. 139

4.1 Schematic specification of unreliable processes. 148

4.2 Schematic specification of unreliable agreement processes. 149

4.3 Relationship between base and meta-level objects. 152

iii

iv List of Figures

5.1 Specification of region trees. 160

5.2 Specification of sensors. 161

5.3 Simplified specification of mobile agents. 162

5.4 Internal event flow of the mobile architecture. 163

5.5 Specification of location service nodes. 164

5.6 Composition of the mobile architecture. 165

Chapter 1

Introduction

This thesis is about theoretical foundations for the design of extensible software

systems. This means that we are interested in providing here a characterisa-

tion of extensible systems as well as studying formal theories to support their

rigorous specification and verification. As such, the thesis can be regarded as

the outcome of research in three distinct subject areas: Theory of Computing,

Software Engineering and Distributed Systems.

The pressing need to support distributed extensible systems has recently

appeared as a result of technological innovation. At the current moment, it

is possible to use portable computers, cellular phones, personal digital assis-

tants and other devices connected to worldwide networks, which are in this way

sparsely distributed and fairly heterogeneous. Because the interconnections be-

tween these hardware components may change at any time and it is normally

possible to attach new equipment to the network and disconnect some of its

parts, it seems to be reasonable to consider this architectural style as extensible.

The required software components that populate these machines may in turn

be remotely used, created and reconfigured. Moreover, it is often the case that

such components can move from one node of the architecture to another. End

users correctly perceive these movements through revisions in the functionality

provided at their current location. Software systems organised in this way as

well as some of their sub-systems can again be regarded as extensible.

The same sort of software system is desirable for other reasons if we ex-

amine their engineering process. Clearly, to design, implement, test and make

a software system available for use may take sufficient time to allow the initial

requirements to change in perhaps unpredictable ways. In those cases where it

is feasible to design the system so that it can be dynamically altered according

to some particular customer needs, such solution appears to be more conve-

nient because it may avoid maintenance. Depending on the way the system

1

2 Chapter 1. Introduction

was designed, modifications may be produced by agents such as the end user,

the (meta-level) objects present in the operational environment and so on, and

many may be the methods supporting this process of change, by interacting

with an appropriate sub-system or by using the whole system to refine a model

causally connected to its own behaviour, for example. These methods may alter

the current functionality and structure of the system to such an extent that yet

again software systems with these characteristics can be regarded as extensible.

It is not difficult to figure out that the characteristics above turn the de-

velopment of extensible systems into an activity even more difficult and error

prone than usual. It is well-known on the one hand that, given a set of require-

ments, the unique way of ensuring the correctness of an implementation with

respect to these requirements, meaning that no errors were introduced through-

out the development of the system, is to adopt a (set of) logical system(s) and

use formal, theoretical constructions to prove that the implementation satisfies

the specification of the requirements and is therefore a valid realisation of the

system. To verify that intuitive properties follow from a set of specifications

also increases confidence in the adequacy of each proposed design. On the other

hand, the step-by-step, systematic development of extensible systems presents

its own peculiarities, which appear to demand particular logical systems to allow

if not a formal at least a rigorous treatment. We devote this thesis to the study

of isolated designs in this process and their formal theories.

1.1 What is Extensibility?

It should be evident at this point that extensibility is intrinsically related to the

possibility of change. It has been claimed since the early days of Software Engi-

neering that the right way of dealing with change throughout the development

process is to anticipate them as much as possible (Parnas 1978). In effect, ex-

tensibility is an outcome of anticipation. To classify the distinct types of change

software artifacts and related objects may suffer appears to be necessary here.

1.1.1 A Classification of Software Changes

The occurrence of changes throughout the life cycle of a system can affect two

distinct kinds of entity: specifications during design and the state of both system

and environment after deployment. Static changes, which affect a system de-

scription, are classified into endogenous and exogenous by Lehman et al. (1984)

depending on the origin of the request for changes. If a change is required

due to decisions made during the design, perhaps because they have made the

1.1. What is Extensibility? 3

continuation of the process impossible, the change is regarded as endogenous.

Otherwise, if the change is caused by a modification in customer requirements,

it is considered to be exogenous. While static changes oblige the designer to

backtrack in the project, dynamic changes are a result of system behaviour.

According to this classification, it is possible that some change be regarded

as both static and dynamic. For example, if a system keeps a model causally

connected to (part of) its own behaviour and allows this model to be changed

at run time, the description of the system will have changed as well as its be-

haviour after some modifications in the model. An example of this functionality

is presented by the text editor Emacs (Stallman 1981). Software systems written

in interpreted languages and reflective software architectures provide other real

examples of this kind. We shall return to these examples in the sequel.

There is an additional classification of dynamic changes which is often

useful in describing the properties of software systems. A change is said to be

functional whenever it results in some modification in the functionality provided

by the system. In addition, the change is structural if it implies a reorganisation

of the interconnections between components of the system. Depending on the

objects affected by a change, it is again possible to classify the same change

in both categories. For example, in a telecommunications network, if a calling-

number paging service becomes available whenever a call-forward service is not

accessible, as a result of applying this rule part of the network must face a struc-

tural change whereas the whole system will have suffered a functional change.

For a software system to be really extensible, to support some of these two types

of change is a necessary requirement. As a corollary of this imperative, we ob-

tain that purely functional programs cannot be extensible as it is impossible to

capture notions of state and change in this way.

A characterisation of extensibility can be derived from the allowed degree

of dynamic changes. We say that a software system is customisable whenever

dynamic changes range only over second class entities such as constants from a

fixed set. Conversely, a system is said to be extensible if changes also encom-

pass first class objects, which are dynamically created, altered and referenced.

For instance, if a Lisp program may only read configuration files not containing

function definitions, if some concurrent processes only admit a fixed set of config-

urations, these systems are considered to be customisable. Otherwise, they are

regarded as extensible. Bearing in mind this definition, it is easy to understand

why Agha (1986) regards openness as a prerequisite for extensibility: without

considering the existence of an environment and the ability to interact with

other similar components therein, a system cannot be regarded as extensible.

4 Chapter 1. Introduction

1.1.2 Related Terminology

In order to further clarify the notion of an extensible software system, let us ex-

amine other terms which may at first seem to be directly related to extensibility

but in fact refer, as they are defined in the literature, to many distinct stages of

the development process.

The terms adaptable (Alencar et al. 1995) and adaptive (Lieberherr et al.

1994) have been both used to stand in more or less detail for a software develop-

ment technique whereby software artifacts, specifications and implementations,

are defined in a generic way so as to allow further particularisation, which may

turn out to be subsequently necessary. Depending on whether or not there exists

a systematic method for deriving particular instances from each generic descrip-

tion, the term adaptive is used. In both cases, the main focus of attention is

in obtaining artifacts to serve as a practical basis for reuse in more advanced

stages of the development of the same system or throughout the life cycle of

other systems.

Lehman and Belady (1985) use evolvability to make reference to the prop-

erty enjoyed by some systems of easily allowing maintenance. Kamel (1987)

argues that this property is fundamentally related to the modular character of

system components. Clearly, evolvability presupposes that some design steps

have already happened and asserts how easy it is to backtrack in the process.

Parnas (1978) in his paper was really referring to evolvable systems, proposing

in addition techniques to ensure modularity and extensibility.

As an aside, it is important to mention that for historical reasons we have

chosen to use here extensible as the flagship word to stand for the family of

software systems we are interested in treating. The same term has been used

by Matsuoka (1993) only to make reference to concurrent reflective object-based

architectures and their features. It would certainly be incorrect in the context

of this thesis to infer that, because we claim to be interested in dealing with ex-

tensible systems, to observe them presenting at some moment less functionality

than in a previous instant would be forbidden. Of course, we strive to support

equally not only the design of extension and contraction, being two faces of the

same coin, but of any kind of dynamic change as well.

1.1.3 Approaches to Support Extensibility

Many ways of dealing with the design and implementation of software systems

have been studied in the literature serving as means to guarantee extensibility.

As a general rule, these approaches do not depend on any particular level of

abstraction to be adopted and fall into one of the following categories:

1.2. Formal Design of Extensible Systems 5

open reconfigurability: Distributed systems consist in collections of loosely

interconnected components. When such interconnections may vary at run

time due to the addition of new components and as a result of changes in

established connections, we say that the system is reconfigurable. More-

over, if it is possible for the system to interact at some point with an

environment over which little if any control is kept, we say that the sys-

tem is also open. The actor model initially proposed by Hewitt and Baker

(1977) and later refined by Clinger (1981), Agha (1986) and Talcott (1997)

appears to be the most faithful representative of this approach;

dynamic sub-classing: The notion of class is widely know within the object-

based design community as defining collections of objects with the same

behavioural characteristics (Wegner 1987). If it is possible for an object to

migrate from one class to another at run time, we say that dynamic sub-

classing is supported. This should not to be confused with inheritance,

which is a reuse technique based on the hierarchical organisation of object

descriptions. A detailed formal treatment of dynamic sub-classing has

been developed by Wieringa et al. (1995);

meta-architectures: Computational objects are defined in terms of a set of

primitive notions. Provided that it is possible for some objects to manipu-

late (a number of) these notions as if they were conventional data objects,

we say that meta-level facilities are supported by the architecture. The

most general case of meta-level support is that of computational reflection,

wherein each object carries a description of its own behaviour and behaves

in a way causally connected to such a description (Maes 1987).

The approaches above are based on distinct notions and give rise to exten-

sible systems with diverse features. Not all of them are fully compatible with the

conventional concept of rigorous stepwise development. In the following chap-

ters, we shall study how to design systems in some of these ways, clarifying the

reasons for regarding the others as unsuitable.

1.2 Formal Design of Extensible Systems

It has long been recognised (and neglected) that software systems must be de-

signed accordingly if they are to be extensible. Parnas (1978) recalls that:

The usual programming courses neither mention the need to antici-

pate change nor do they offer techniques for designing programs in

which changes are easy. (Parnas 1978)

6 Chapter 1. Introduction

If we want to consider in a formal way the design of extensible systems, the

situation is even worse. Kramer and Magee (1990), for example, studying the

properties of dynamically changing distributed applications, had to develop all

their analyses in a textual, informal manner. This is not a general problem since

well-established formal methods which can deal with partial correctness and

some forms of termination do exist. VDM (Jones 1990) and Z (Spivey 1989) are

classical examples but these methods cannot address any form of concurrency.

UNITY (Chandy and Misra 1988) overcomes this limitation, although it is not

meant for designing open systems, as identified by Fiadeiro and Maibaum (1997).

The problem here appears to lie in the fact that these methods were developed

without having in mind any of the aforementioned extensibility approaches.

In effect, extensible systems are reactive systems with dynamically vary-

ing functionality or structure. In this context, the verification of termination

properties becomes less important whereas the possibility of describing concur-

rent behaviour is paramount given that such systems may be in continuous and

simultaneous interaction with many agents in their operational environment. In

many cases, termination is not only unnecessary but also forbidden as a viola-

tion of a safety property of the system. Moreover, characteristics like naming,

which we shall examine in detail later on, are also important in order to deal

with reconfigurability and openness. The most prominent formal methods and

techniques devoted to capturing these notions are examined below.

1.2.1 Process Calculi and Extensibility

Processes and systematic methods of reasoning based on this notion have been

around in polished form since the publication of the inspiring paper by Hoare

(1978) on the specification language CSP. Later on, Hoare (1985) also developed

a collection of proof rules to allow the verification of synchronous concurrent

programs. A different theory distinguishing more process non-determinism than

CSP was developed by Milner (1980) and called CCS. Milner (1983) also intro-

duced a distinction between synchronous and asynchronous modes of interaction

in two different process calculi based on CCS. In addition, he extensively studied

notions of equivalence for processes (Milner 1989).

In spite of the widespread use of CSP and CCS, it soon became clear that

such languages could not support in direct ways the specification of systems of

reconfigurable nature. Moreover, the practice of designing distributed systems

showed that more specific modes of interaction between process would be neces-

sary to cover some applications in a realistic manner. Thomsen (1991) proposed

two higher-order calculi of processes, where full entities of this kind could be

1.2. Formal Design of Extensible Systems 7

hhhhhhhhhhh
@
@
@
@
@@

!!!!!!!!!!!!!!

b
b

b
b

b
b

b
bb

CSP (Hoare 1978)

CCS (Milner 1980)

ASCCS (Milner 1983)

ν-calculus (Honda and Tokoro 1991)

lazy λ-calculus (Abramsky 1990)

CHOCS (Thomsen 1991)

PCHOCS (Thomsen 1991)

π-calculus (Milner et al. 1992)

SCCS (Milner 1983)

Figure 1.1: Evolution of process design languages.

transmitted as a result of interaction. Honda and Tokoro (1991) opted in the

ν-calculus for asynchronous named objects so that only names instead of first

class entities could be transmitted in messages. Milner et al. (1992) also pre-

ferred named entities in the π-calculus, sticking to a formalism considering only

synchronous processes with reconfigurable interconnection topology.

The careful reader may have noticed that these refined process calculi cor-

respond in a way to each of the approaches listed in the previous section, which

aim to obtain extensible systems as an outcome of the development process.

The π-calculus of Milner et al. (1992) in particular would appear to be the ideal

formalism to adopt in designing extensible systems since the object calculus of

Honda and Tokoro (1991), the higher-order calculus of Thomsen (1991) and also

the lazy λ-calculus of Abramsky (1990) can all be faithfully embedded in this

formalism, as illustrated in Figure 1.1. However, process calculi alone also have

their limitations such as the impossibility of specifying and verifying liveness

properties, which some real systems must eventually fulfil. This is made worse

by the fact that in a stepwise development process some entities may need to

be represented as part of a design but will not (and sometimes cannot) be re-

fined into processes in the usual computational sense. These reasons lead us to

agree with Tokoro (1993) in that processes appear to be a better abstraction for

understanding implementations and the semantics of concurrent programming

languages than they are to provide an organised and realistic view of the problem

domain. We are thus compelled to look after another kind of formalism.

8 Chapter 1. Introduction

1.2.2 Temporal Logic and Extensibility

Temporal logic has been applied with great success to the specification and

verification of software systems since the seminal work of Pnueli (1977). The

evolution of this subject area has been constant. Manna and Pnueli (1983)

showed how temporal proof systems could be associated to (concurrent) pro-

gramming languages in a natural way. Barringer (1987) solved the important

composability problem, making it possible to rely on the structure of each pro-

gram in proving temporal properties. Fiadeiro and Maibaum (1992) raised the

abstraction level of his work by showing that open concurrent systems could

be designed in a modular way in terms of temporal theories. Their results were

further extended by Sernadas et al. (1995), who developed a temporal logic suit-

able for object-oriented systems design. Meanwhile, Lamport (1994) and Abadi

(1996) have applied the Temporal Logic of Actions in a multitude of domains,

treating in particular the development of distributed fault-tolerant systems.

Despite these advances, it is surprising to discover that the design of open

reconfigurable systems cannot be directly addressed in detail with any temporal

logical system proposed in the literature. In particular, attempting to represent

the properties of objects according to the actor model, one easily discovers that

a logic which can properly handle object naming as well as presenting a set of

connectives with the required meaning is not available. These characteristics

are needed in representing some extensible systems accurately.

If compared to process calculi, temporal logics are not suitable for dealing

with process or program equivalences but have the fundamental advantage of

not committing the whole development process to a fixed abstraction level nor

to a fixed abstraction notion, depending of course on how they are defined. The

design units may represent programs, processes, theories, objects and others.

Temporal specifications in turn may or may not be realisable as executable

entities (Abadi et al. 1989). Emerson (1983) proposes a helpful classification of

temporal logical systems in exogenous and endogenous depending on whether or

not expressions pertaining to the domain of some abstraction notion are covered

in the definition of the logical language. Remarkably, all the modal and temporal

logics associated to process calculi such as that developed by Milner et al. (1993)

are of an exogenous nature. Conversely, to achieve enough freedom to apply a

temporal logic in describing many problem domains at potentially distinct levels

of abstraction, the logic must be an endogenous one. In this thesis, we define

and analyse an endogenous temporal logical system.

1.3. Aims of the Thesis 9

1.3 Aims of the Thesis

To summarise what we have already discussed in this chapter, let us revisit some

of the aims of this thesis. Namely, we have hoped to:

• identify what it means for a software system to be extensible;

• identify software development approaches which support extensibility.

We have already provided practical reasons and examples that justify the great

importance currently attributed to extensible systems. We have also provided

an informal definition of extensibility in terms of possible run time changes and,

in addition, a comparison with other related software process notions. These

developments allow us to claim that we have characterised extensible software

systems. No similar characterisation appears to exist in the literature.

An informal characterisation is not sufficient to support the design of the

family of software systems we are aiming at here. In Section 1.2, we examined

some classes of theoretical frameworks which are available in the literature and

could perhaps be adopted to attempt to accomplish the following two goals:

• to establish theoretical foundations for the design of extensible systems;

• to show that these foundations can be applied in practice to design exten-

sible systems in a rigorous way.

We have argued that the existing formal frameworks cannot be directly ap-

plied to design extensible systems. Therefore, by establishing our own formal

foundations in terms of a specific temporal logical system, we aim to support

their rigorous design and to be able to contrast to each other in an unambigu-

ous manner the characteristics of extensible systems reported in the previous

sections, i.e., their design space (Wegner 1987). This study may be useful in

deciding which approach to use in representing the distinct situations that arise

in practice. The remainder of the thesis deals with these issues.

1.4 Outline of the Thesis

Most of the following chapters have the same fixed structure. In the beginning

of each chapter, we shall present either a (not necessarily complete) historical

retrospective or contextual information which motivates our work. Technical re-

sults are subsequently presented and discussed. The last section of each chapter

summarises these results and contrasts them to other related work.

10 Chapter 1. Introduction

Chapter 2 develops our proof-theoretic approach to software development.

It begins by describing a rigorous step-by-step way of dealing with software

development and its connections with the formal structures of general logics.

We examine these connections with the aid of category theory. In the light of

this study, we present an incremental axiomatisation of a first-order branching

time logic that appears to be an appropriate basis for the design of extensible

systems. We examine in detail some characteristics of the logical system such

as soundness, completeness and expressiveness.

The subsequent chapter of the thesis shows how to design open reconfig-

urable systems using a particularisation of the logical system previously defined.

We specifically examine in full detail the actor model, proposing an axiomati-

sation for its features and studying the composition of actor specifications in

terms of pushouts in categories of theory presentations. We also show that the

model is sufficiently abstract to capture not only distinct modes of interaction

but also many approaches to support extensibility. To verify properties of actor

systems in a rigorous manner, we adopt a rely-guarantee discipline and prove

some meta-logical properties that are helpful in practice.

We continue the investigation on applying our temporal logical system with

a study of computational reflection and the design of meta-level architectures in

Chapter 4. We show that the assumption of meta-level architectures is reason-

able in the design of open reconfigurable systems as formalised in the preceding

chapter. We also show that the design of meta-level architectures, despite their

apparently circular definition, does not require logics with higher-order features.

Moreover, we show that the assumption of an underlying reflective architecture

conflicts with systematic software development.

Chapter 5 presents a realistic case study on applying the formal develop-

ments of the thesis. We present the specification and verification of a location

management architecture in order to illustrate how to design in a rigorous man-

ner software systems that can be extended by mobile components.

The last chapter of the thesis is dedicated to summarising our work and

to presenting not only our conclusions but also prospects for future research.

Throughout the thesis, we attempt to use uniform notation and terminol-

ogy. Indexes pointing to our notational and conceptual definitions are provided

at the end of the text, after the bibliography details. Two appendixes are also

provided at the end containing the statement and some proofs of properties

assumed in the body of the thesis.

Chapter 2

Proof Theory and Software
Development

Since the seminal work of Floyd (1967), we have hoped to develop an appropriate

theory to support rigorous software development. With his inspiring method,

Floyd was the first to attempt to ensure in a formal systematic manner that

computer programs perform only valid computations, in spite of the practice at

that time which was to define merely how each program should compute. His

work was centred on associating in a precise way logical assertions to program

fragments so as to make possible the proof of partial correctness and termina-

tion properties. Admittedly, his method could not scale up to handle the full

complexity of real software systems and programming languages.

Another landmark in rigorous software development was the advent of

abstract data types (ADTs) as proposed by Liskov and Zilles (1975). ADTs are

formal self-contained descriptions of data types and operations in terms of which

the whole development process may be understood. They are not meant to stand

only for computer programs because the focus of attention in their definition

is to describe in a property-oriented relational manner the problem domain,

rather than computations, introducing the notion of abstraction in software

development. Implementations of ADTs in real programming languages would

be obtained at the last stages of the process after a series of refinements.

The studies on the theory of ADTs proved to be very fruitful. Many proof

calculi to support verification of properties were proposed by Ehrig and Mahr

(1985), Maibaum et al. (1985) and by Sza las (1988) for equational, classical and

temporal logics, respectively. On the semantic side, algebraic and abstract model

theories were developed by Ehrig and Mahr (1985) and by Goguen and Burstall

(1992). Perhaps due to this logical diversity, general logics and frameworks

were outlined in the work of Meseguer (1990), Meseguer and Mart́ı-Oliet (1995).

An approach based on manipulating ADTs using abstraction was established

11

12 Chapter 2. Proof Theory and Software Development

by Ehrich (1982) attempting to make more tractable the process of software

development, which in effect could be horizontally and vertically decomposed

due to the self-contained character of the manipulated descriptions and to the

existence of many abstraction levels, respectively.

Despite their success, it soon became clear that the basic modularisation

units of the development process, purely algebraic theories specified by ADTs

using some logic, were not well suited to software development in general. To

be able to implement ADTs using any imperative language of proven practical

value, for instance, it would be necessary for them to embody such notions as

state and assignment which could be not be captured explicitly in a purely alge-

braic manner. Moreover, the assumption that complex systems could always be

explained in terms of (possibly divergent) functions defined by algebraic theo-

ries put together prevented an appropriate description of concurrent and reactive

systems, where mutual interference in intermediate computation steps plays an

important role and termination is only a representative of the class of eventual-

ity properties. Not all the proposed logics turned out to be suitable to handle

this latter aspect. It has been possible, however, to deal with these issues by

fixing the logic as a temporal one (Pnueli 1977) and changing the structuring

notion from algebraic to temporal theories (Fiadeiro and Maibaum 1992), even

though there is not enough evidence that such an approach would be useful in

capturing all the problems of practical interest that may require a computational

solution. The same has also been noted considering the notion of process and

the respective calculi as reported in our introductory chapter (Milner 1996).

In view of our interest in providing a tractable account for the design of

extensible systems, we may infer some important conclusions from the above.

The experience with ADTs demonstrates that it is paramount to develop a pro-

found understanding of software development and its underpinning notions to

avoid the risk of proposing a theory which cannot be practically used throughout

the whole process. For this reason, we shall choose in the sequel modularisation

units which are not as concrete as programs nor as inflexible as ADTs, which will

be shown adequate by their usefulness in capturing real situations, but cannot

be guaranteed to address directly all the problems that may require compu-

tational treatment. Understanding their underlying logical system in terms of

general logic facilitates the assessment of characteristics like expressibility and

composability, as well as to move to a distinct setting in case a real problem is

found that cannot be properly treated by the chosen formalism.

The purpose of this chapter is multi-fold. First we outline an approach

which we believe provides a better explanation for the process of software devel-

2.1. The Proof-Theoretic Approach 13

opment. We try to identify which notions would allow us to treat the process in

a formal manner. Next, by providing formal definitions for most of these notions

in the context of general logic, we establish our own particular view of both logic

and software development, which keeps several similarities with previously pro-

posed frameworks, but nevertheless cannot be fully described in terms of these

related works in the way they appear in the literature. We go one step further,

applying these notions in the definition of many distinct logical systems, which

towards the end of the chapter are unified to form what can be regarded as the

original foundational contribution of our work. We critically review in this way

most of the background material required to understand the families of systems

formalised in the remainder of the thesis.

2.1 The Proof-Theoretic Approach

A rigorous and systematic approach to the process of software development has

been proposed by Maibaum and Turski (1984). Essentially, the approach relies

on the notions of theory and interpretation between theories much in the way

that ADT specifications and abstraction are used by Ehrich (1982) to organise

the software process. The main difference between these approaches is that the

former emphasises the use of syntactical constructions of some logic whereas for

ADTs no specific prescription is made. For that reason, the first approach was

initially called logical.

The rationale for introducing this distinction, which we entirely agree with,

is that it appears more natural to explain software development in terms of theo-

ries and their syntactic interconnections than it is using semantical constructions

like models and homomorphisms between algebras as studied by Ehrig and Mahr

(1985). Take as an example a program implementing a particular specification.

From the point of view of a software engineer, it can be made clear how to show

in a systematic and direct manner from the source program using the adopted

proof calculus that the program satisfies all the constraints posed by the spec-

ification and, indeed, implements it. On the other hand, to provide the same

kind of assurance using models, their structure must also be formally known a

priori and only after determining the classes of models of both specification and

program is it possible to show an embedding of the latter into the former. Some

advocate that the whole process can be justified only on semantical grounds, but

by relying merely on models, usually abstract notions without much linguistic

structure, we also loose traceability, the possibility of identifying precisely how

distinct stages of the development process are (linguistically) related.

14 Chapter 2. Proof Theory and Software Development

....................

6 6

....................

6

....................

6

....................

6

....................

6

....................

6

R

..................

R

..................

R

..................

(a) single step (b) composition of steps

-

-

-

-

-

-

-

Figure 2.1: Steps of the development process.

The logical approach is rigorously defined in terms of theories and inter-

pretations between theories. As far as an entity can be explained within a full

entailment system, endowed with a syntax and a notion of logical consequence,

it can be assigned to a theory, its set of consequences. In software development,

almost everything can be explained by a theory, from requirements to programs,

although such theories are not always formal. The motivation for using theo-

ries as modularisation units stems from their explanatory and self-contained

character. For instance, every ADT specification determines a theory but the

converse is not necessarily true. Having these basic objects at hand, one may

want to argue about their relationships and a way to do so is through the use

of extensions and translations. As sets, there is a natural notion of extension

between theories based on containment. As linguistic constructions, they are

equipped with a canonical relation of translation based on the renaming of sym-

bols in their languages. Two particular instances of these are inclusions that

are conservative extensions and translations which are interpretations between

theories. Conservative extensions prevent the creation of new consequences for

the original language within the scope of the extended theory and interpreta-

tions preserve the original consequences no matter what their representation is

in the new theory. Clearly, none of these notions are necessary, but they are

sometimes useful.

The logical approach is systematic in that it prescribes how the stages of

the development process should be organised. Starting from an abstract theory,

2.1. The Proof-Theoretic Approach 15

presumably generated by some previously defined specification, an interpreta-

tion of this original theory is chosen to serve as a conservative extension of a

more concrete resulting theory. Intuitively, extension corresponds to addition

of detail while interpretation relates two distinct levels of abstraction. This is

illustrated in Figure 2.1. Note that the resulting object does not have to define

a program, because many steps may be required before this is achieved; the

specification is going to be realised in some other form due to a design decision

or it is impossible to produce a program from the current theory. Also note that

the order in which extension (denoted by arrows with tails in the figure) and

interpretation (represented by single arrows) are computed should be immaterial

and once defined it must always yield the same result had the other sequence of

operations been chosen. The refinement steps thus defined (represented using

dotted arrows) can be composed as operations on theories. To support these fea-

tures, the meta-theory of the adopted entailment system is required to possess

some properties (Maibaum et al. 1985).

There is no specific prescription in the logical approach as to which logical

system should be used, as soon as it supports the two main activities of rigor-

ous development, design and implementation, in a syntactic manner. Maibaum

et al. (1984) adopted an infinitary conservative extension of classical first-order

logic. Actually, the work of Maibaum and Turski (1984) suggested that many

systems could be used, one for each stage of the process. Here, since we are only

concerned with designs considered in isolation, we may adopt a single logical sys-

tem, but it is worthwhile mentioning that there is a variety of them to be chosen

and each one can make software development more or less painful depending

on its features. For instance, it would appear intuitive to regard propositional

intuitionistic logic as a strong candidate, given its tight connections with the

typed λ-calculus via the Curry-Howard isomorphism (Howard 1980), hence with

computable functions. However, as already mentioned, software development

takes place as a gradual process of decreasing abstraction. It may well be the

case that, in the middle of the process, the designer produces a specification

intending to describe how a single individual or a community of living entities

behave. In such situations, it would be quite restrictive to use an intuitionistic

logic. In contrast, choosing proof-calculi without finitary presentation would

immediately prevent reasonable automated support.

Concerning the basic building blocks of design, as soon as they define

theories, no prescription is made as well. A formal theory may be presented

by a finite set of axioms written in a language allowed by the chosen logical

system. The original theory may be recovered from these axioms through the

16 Chapter 2. Proof Theory and Software Development

Theory PA
sorts nat

constants 0 : nat

operations s : nat→ nat; + : nat× nat→ nat; ∗ : nat× nat→ nat

axioms
¬(0 = s(x)) (1.1)
s(x) = s(y)→ x = y (1.2)
x + 0 = x (1.3)
x + s(y) = s(x + y) (1.4)
x ∗ 0 = 0 (1.5)
x ∗ s(y) = x ∗ y + x (1.6)
p[x\0] ∧ (∀x · p[x]→ p[x\s(x)])→ ∀x · p[x] (1.7)

End

Figure 2.2: Classical first-order theory of Peano arithmetic (Kröger 1990).

application of inference rules. For the purpose of software design, the fact that

a theory cannot be finitely presented should indicate that either the chosen

logical system is not adequate, because it is impossible to represent a problem

of interest, or the problem is not to be captured, due to a decision in the design

of the formalism. Therefore, it makes sense to restrict our attention to finitely

presentable theories and regard only their presentations as specifications. It

is important to stress that this requirement is stronger than what is usually

understood in logic by the finite axiomatizability of a theory because we require

the axiomatisation to be supplied. Interestingly enough, the existence of a finite

axiomatisation depends on the chosen logical system. For example, in first-order

logic the axiomatisation of the theory of Peano arithmetic in Figure 2.2 is not

finite — (1.7) generates an infinite set of axioms, one for each formula p — nor

there is a finite one (Ryll-Nardzwski 1952). Neither of these assertions are true

if we consider full second-order logic instead.

Initially, all the effort was directed towards characterising how implementa-

tion steps could be compartmentalised due to the use of conservative extensions

and interpretations between theories. A controversy stated by Diaconnescu et al.

(1993) concerning the use of an apparent semantic counterpart to the former

notion had to be spelled out by Veloso (1992). In essence, the claim was that

the software process could be best described in terms of model expansions but,

as it turns out, due to the existence of conservative non-expansive extensions,

model expansions do not characterise some syntactic constructions of practical

interest. Despite these advances, it was only recently that a convincing expla-

2.1. The Proof-Theoretic Approach 17

nation of horizontal structuring was developed. Fiadeiro and Maibaum (1992)

showed that conservative extensions could not be seen as the basic mechanism

for composing theories. In point of fact, to achieve composability in software

development, the possibility of putting theory presentations together to form

complex system descriptions, one should be prepared to use creative extensions.

The use of such extensions has been identified with the emergence of properties

of components when placed in complex configurations (Fiadeiro 1996).

Combining the assumptions of the logical approach and the requirement

of using only finite presentations of theories and proof calculi, it seems more

sensible to consider the approach above to be proof-theoretic. We stress in this

way the fundamental importance of proof-theory as the support upon which

specifications, interpretations and their verification, the core objects in rigorous

design, are constructed. By this, we are not proposing to abandon model-theory;

this does not appear to be appropriate especially in using incomplete logics

or trying to achieve higher confidence in a design; nevertheless, we see proof-

theoretic constructions as the right objects to deal with in software development.

The approach described so far has been recast in terms of category theory

by Fiadeiro and Maibaum (1996). Using this new formulation, let us show as

an aside that this approach is useful to clarify the nature of some important

properties. The most desirable of these appears to be compositionality, which

relates horizontal (design) and vertical (implementation) structuring in the de-

velopment process. Jones (1990) proposes the following characterisation:

The need is for development methods which have the property that

implementations which satisfy specifications of sub-components can

be composed so as to satisfy the specification of a system without

further proof. A compositional development method permits the ver-

ification of a design in terms of the specifications of its sub-programs.

(Jones 1990)

Clearly, compositionality is a relation between the way specifications and pro-

grams are composed and verified. Using the terminology of Jones, it means that

if we have S ′ as a specification of a system composed by two specifications S1

and S2 connected through a third one called S and we implement each of them

respectively as P ′, P1, P2 and P , we expect the existence of a “unique” way η of

seeing the program P ′ as an implementation of S ′ such that it is a composition

of P1 and P2 connected through P . This is depicted in Figure 2.3.

The point here is that, in a compositional development process, the original

specifications and their structuring are indeed preserved in each implementation

step. In categorical terms, this property is captured when we say that there is

18 Chapter 2. Proof Theory and Software Development

a functorial relation between the categories of programs and specifications. In

the figure, this relation can be represented within the same diagram due to the

use of a retrieve functor Retr which maps each program into a corresponding

specification. The functor plays the role of conservative extensions as explained

above and the morphisms interpreting specifications into retrieved programs

complete an implementation step. The notion of satisfaction of a specification

by a program is generalised in this way. The fact that an implementation step

is compositional, meaning that η is unique up to isomorphism, is automatically

ensured whenever Retr is a functor (Fiadeiro and Maibaum 1996). All these

formal constructions justify the desirable real situation in which it is possible to

divide the complex task of verifying that an implementation satisfies a design

based on the refinement of its components, as identified by Jones.

Another interesting property called full abstraction is often mentioned in

the literature. Despite this fact, there does not seem to exist a consensual

definition, although some say that this notion is related to the absence of im-

plementation details in each specification:

A (model-oriented) specification is biased on an underlying set of

states. The model is biased (with respect to a given set of operations)

if there exist different elements of the set of states which cannot be

distinguished by any sequence of operations. A model is sufficiently

abstract providing it can be shown to be free of bias. (Jones 1990)

Moving away from model-oriented specifications as in VDM and their specific

notions of state and operation, one may simply say that each biased model

contains information which is useless for the particular specification in its current

level of abstraction. Specifications in turn are said to be fully abstract whenever

their models are not biased. Turski and Maibaum have an interesting point

of view concerning the description above, which gives us enough motivation to

provide a rigorous account of that notion in a similar way to compositionality:

In full generality, the problem of a specification being without bias,

or ‘sufficiently abstract’ in Jones’ terminology, is one that requires

a specific context for its resolution. If a specification is considered

separately, as an expression of a linguistic level, without a history

(the specification for which the current one is an implementation

or ‘program’) and without future (programs that satisfy the current

specification) the problem is not very meaningful. (Turski and

Maibaum 1987)

Considering this point of view, it appears to be more appropriate to regard

full abstraction as the methodological property that distinct programs can be

2.2. Logic in General 19

distinguished by some specification. Many distinct ways of refining the same

specification may exist and the information it conveys does not need to be to-

tally useful for all purposes, whereas it should be essential for some. A typical

example is the systematic addition of concrete details aiming at a specific imple-

mentation platform. If a component in a complex configuration is only to read

data from a common storage in a shared-variable mode of interaction, none of

its operations will change the shared state. Hence, specifications taking this fea-

ture into account would appear to be implementation biased if seen in isolation.

Considering that the same component is to be implemented in a shared-memory

platform, its specification and the adopted refinement method may well be re-

garded as fully abstract. As in the case of compositionality, we can provide a

categorical characterisation of full abstraction as shown in Figure 2.3.

The fact that a refinement method is fully abstract ensures the construc-

tion of implementation steps with enough freedom to distinguish through some

specification and realisation any pair of distinct programs. Suppose that the

refinement P1 of a specification S1 is supported by an interpretation between

theories ι1 and the same happens, respectively, with S2, P2 and i2. We say that

the method partially captured by Retr is fully abstract if for any such objects,

[Retr(P1)] and [Retr(P2)] are equivalent (η-isomorphic) whenever P1 and P2

are also related in this way by some τ . Note that this is in keeping with the

view that a set of possible specifications, determined here by a powerset functor

[·], defines the meaning of each program1. Seen as above, full abstraction as

well as compositionality should be sought in any development method, much

in the way that they are in defining programming language semantics (Pnueli

1985b). They are not, however, properties of every method: both are captured

when there is a functorial relation between programs and specifications (because

functors preserve composition and isomorphisms), but only for some restricted

methods relating such categories of objects will they hold.

2.2 Logic in General

As illustrated in the previous section, category theory can play a central role

in providing a formal and generic account of software development and logic.

Instead of stressing the intensional character of collections of objects as in set

theory, categories provide an extensional perspective of some problem by fo-

cusing mainly on relationships between objects. In what follows, the notion of

1The application of the functor [·] to specifications can be defined as [S] def
= {S′|S′ → S}

and to the morphisms in the category as [i] def
= [dom i]→ [cod i] which is the case if and only

if [dom i] ⊆ [cod i]. The usual semantics functor is defined as [[·]] def
= [·] ◦Retr.

20 Chapter 2. Proof Theory and Software Development

(b) full abstraction(a) compositionality

ProgSpec
Retr

�

6

6

@
@

@@I

6

6

@
@

@@I

@@

@@I 6

6

@
@

@@I

@@

@@I
a a

-

-

-

-

@@

@@I

S1

S

S′

S2

ι1

ι

ι2

η

σ1

σ2

Retr(τ1)

Retr(τ2)

Retr(P1)

Retr(P)

Retr(P2)

τ1

τ2

P1

P

P ′

P2

6

6 6

6

@
@

@@I

@
@

@@I

-

-

-

-

aaa
aaa

aaaI

S2

S1

[S2]

[S1]

ι2

ι1

[ι1]

[ι2]

Retr(τ)

Retr(P2)

Retr(P1)

[Retr(P1)]

[Retr(P2)]

η

τ

P2

P1

Figure 2.3: Properties of the development process.

category is defined as in the classical textbook of Goldblatt (1979):

Definition 2.2.1 (Category) A category C consists of:

• a collection2 of entities called objects, represented as obj C;

• a collection of entities called morphisms, represented as morph C;

• two operations assigning each morphism f of morph C to objects dom f

and cod f in obj C, called the domain and codomain of f , respectively.

Each f in morph C with dom f = a and cod f = b is written as a
f
→ b;

• an operation ◦ called composition assigning each two morphisms f and

g of morph C having dom g = cod f to another morphism (g ◦ f) in

morph C, the composite of f and g, where dom (g ◦ f) = dom f and

cod (g ◦ f) = cod g, such that for every f , g and h in morph C with

dom g = cod f and dom h = cod g, the associativity axiom holds:

(ASS) h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

2To make clear our choice of foundational notions concerning set theoretic structures, col-
lection here means a set or a class indistinctly. Hereafter, we shall not worry about such
foundational issues.

2.2. Logic in General 21

• an operation assigning a morphism ida in morph C, dom ida = cod ida =

a, to each object a of obj C, the identity morphism of a, such that for any

f and g in morph C with cod f = a = dom g, the identity axioms hold:

(ID) ida ◦ f = f and g ◦ ida = g.

We have already provided examples of collections of objects, specifications and

programs, that may possess enough structure to determine categories, when they

are related through morphisms defining interpretations between their theories.

In Figure 2.3, we discussed some collective properties of these categories when

connected by a functor, a morphism of the category of categories (i.e., between

categories). As in that case, studying some particular problem, it is almost

always the case that one is searching for a universal property, characterised by

the existence of an object or morphism defined up to isomorphism which enjoys

the particular property and is related to each of the other similar members of the

category in a unique way. Compositionality, say, was associated to the existence

of a unique morphism η relating complex specifications to retrieved programs

that records the way they were originally composed. As illustrated through that

figure, it is sometimes more convenient to study these properties in terms of

diagrams, the corresponding diagrammatic presentations.

In order to manipulate the basic building blocks of the development process

as objects in a category, we rely on the definition of their grammar in terms of

signatures, usually finite sets of symbols, and on the existence of a relation of

consequence between sentences and sets thereof defined in terms of a language

allowed by the grammar. In this setting, it is possible to consider theories as

objects, interpretations as morphisms and discuss their properties within specific

categories of theories. This theory-based view of logic was initially proposed by

Fiadeiro and Sernadas (1988) in the form of π-institutions, later revisited by

Meseguer (1990) as entailment systems and finally generalised by Fiadeiro and

Maibaum (1993). In their definition below, we use the notion of sequence and

the following notation. Given a set S, we use the superscript + in S+ denoting

the set of non-empty sequences of S-elements and ∗ in S∗ def
= S+∪{ε} containing

the empty sequence ε. In addition, we use the subscript fin in Sfin representing

the set of finite sequences and ∞ in S∞ stands for the respective set of infinite

sequences. Of course, these notational conventions may be combined, in which

case they have the expected meaning. We also write sequence length as len S

and sequence concatenation as R : T or s : R, s ∈ S, for sequences R, S, T .

Definition 2.2.2 (Entailment System) An entailment system is a 5-tuple Σ

= (Sig, L, E , G, `) where:

22 Chapter 2. Proof Theory and Software Development

• Sig is a category of signatures;

• L is a set of logical symbols;

• E : Sig → Set is a forgetful functor. E associates each signature ∆ in

obj Sig to its set of extra-logical symbols such that E(∆) ∩ L = { };

• G : Sig → Set is a functor defining a language grammar. G associates

to each signature ∆ in obj Sig a set of legal sentences G(∆) ⊆ S+ where

S def
= E(∆) ∪ L. For p ∈ G(∆), p ≡ s1 . . . sn, we extend the definition of E

as follows: E(p) = {si|si ∈ E(∆)};

• ` is a function associating to each ∆ in obj Sig a binary entailment relation

`∆⊆ P (G(∆)) × G(∆). Σ is fully strongly (weakly) structural if and only

if for any Ψ1 ∪Ψ2 ∪ {p, q} ⊆ G(∆), the following conditions are satisfied:

1. reflexivity: Ψ1 `∆ p for every p ∈ Ψ1;

2. monotonicity: if Ψ1 `∆ p and Ψ1 ⊆ Ψ2 then Ψ2 `∆ p;

3. transitivity: if Ψ1 `∆ p for every p ∈ Ψ2 and Ψ1 ∪ Ψ2 `∆ q, Ψ1 `∆ q;

4. strong (weak) structurality: for every τ : ∆ → ∆′, if Ψ1 `∆ p, there

is an empty (finite) Ψ′
τ ⊆ G(∆′) such that G(τ)(Ψ1) ∪ Ψ′

τ `∆′ τ#(p),

where τ#(p) is defined by pointwise application of τ : for 1 ≤ i ≤ len p,

τ#(pi) = pi if pi ∈ L or τ#(pi) = τ(pi) otherwise.

Roughly speaking, an entailment system supports the manipulation of a fam-

ily of theories based on three components: a category of signatures; a family

of languages endowed with a common grammar and a classification of their

ground symbols; and a family of entailment or consequence relations, one for

each signature. Signatures in general have some additional structure, which can

be forgotten through the functor E yielding a set of extra-logical symbols. The

language grammar can only be defined in terms of these symbols together with

logical symbols, such as connectives, variables and others in L. This require-

ment cannot be found in (Fiadeiro and Sernadas 1988, Meseguer 1990, Fiadeiro

and Maibaum 1993) and is introduced here due to the assumption that each

entailment system has a closed vocabulary of symbols. That is, although dis-

tinct extra-logical symbols may appear in each signature, despite the fact that

the choice of their names is immaterial because they can be renamed by sig-

nature morphisms, this assumption rules out the introduction of new logical

constants as the system is used. We would not be able to regard our approach

to logic as formal if new symbols and notation could be introduced at will, es-

pecially because it would be impossible to develop meta-logical results such as

2.2. Logic in General 23

the deduction theorem which depend on performing inductive arguments over

the languages of the system. Providing the required symbols explicitly also fa-

cilitates extending the definition of entailment systems to deal with theories as

described below.

The properties of full entailment relations are usually found in any kind

of logical consequence. Reflexivity says that everything assumed is entailed.

Monotonicity guarantees that with more assumptions we can never conclude less

properties. Actually, we have favoured monotonicity in lieu of compactness, as

proposed by Fiadeiro and Sernadas (1988), since some of the temporal logics we

shall study fail to guarantee that any property entailed by a set of assumptions is

also entailed by a finite subset thereof. Transitivity, sometimes confusingly called

cut, captures the fact that using conclusions as assumptions does not allow us

to conclude more properties. Note that entailment relations do not capture the

relation of derivability between sets of sentences and single sentences when they

are manipulated by inference rules of a proof calculus. For classical first-order

logic, say, `∆ captures the validities over the signature ∆, which are independent

from the proof calculus adopted.

One notion that entailment relations can capture is the possibility of trans-

lating a validity over a signature into another one belonging to the language of

a different signature. This is useful when it is necessary to proceed in a deriva-

tion within the context of a distinct presentation. For that effect, Meseguer

(1990) proposed `-translation: that the translation of an entailed sentence is

entailed by the translation of the set of sentences which supported the original

relationship, i.e., strong structurality. It turns out that, for some logical systems

of practical interest which we shall study in the next chapter, this condition is

too strong. In a sense, the target entailment may be too weak to support the

original one as such. That is why the existence of a finite set of sentences Ψ′
τ is

required in (4) so that, adjoined to the translation of the original set, ensures the

entailment of the translated sentence (Fiadeiro and Maibaum 1993). In most

cases, `-translation is enough and can be recovered by putting Ψ′
τ = { }.

Theories are defined as follows. Given an entailment system (Sig, L, E ,

G, `) and a set of sentences Ψ ⊆ G(∆) over ∆ in obj Sig, the set of theorems

Th`∆(Ψ) def
= {p ∈ G(∆)|Ψ `∆ p} is called the theory of Ψ over ∆. It is thus the

closure of Ψ under the binary relation `∆. Theories and set inclusion determine

a category Th.

Using the definition of theory, we can lift a category of signatures Sig to

a category of logical theories Theo as follows. For each ∆ in obj Sig, Th∆(Ψ)

in obj Theo if and only if Ψ ⊆ {p ∈ G(∆)|{ } `∆ p}. Moreover, for each Sig-

24 Chapter 2. Proof Theory and Software Development

morphism σ : ∆ → ∆′ and each {Th∆(Ψ), Th∆′(Ψ′)} contained in obj Theo,

there is a morphism τ : Th∆(Ψ) → Th∆′(Ψ′) in morph Theo if and only if

{σ#(p) ∈ G(∆′)|p ∈ Th∆(Ψ)} − Ψ′
σ ⊆ Th∆′(Ψ′), where σ# and Ψ′

σ are as in

Definition 2.2.2. We say that a theory morphism τ : Th∆(Ψ)→ Th∆′(Ψ′) having

σ : ∆ → ∆′ as underlying signature morphism is an interpretation between

theories whenever {σ#(p) ∈ G(∆′)|p ∈ Th∆(Ψ)} ⊆ Th∆′(Ψ′). Furthermore, τ is

said to be faithful 3 if and only if, for every p ∈ G(∆), Ψ′ `∆′ σ#(p) if and only

if Ψ `∆ p. We can now define what is meant by a theory presentation:

Definition 2.2.3 (Theory Presentation) Given an entailment system (Sig,

L, E , G, `), a theory presentation is a pair Φ = (∆, Ψ) where:

• ∆ in obj Sig is a signature;

• Ψ ⊆ G(∆) is a finite set of extra-logical axioms.

As we have already hinted, a weaker notion is that of a finitely axiomatizable

theory: Th∆(Ψ) is finitely axiomatizable if and only if there is a theory presen-

tation (∆,Ψ′) such that Ψ′ `∆ p whenever p ∈ Th∆(Ψ) and only then. The

lifting of Sig to Theo naturally extends to categories of presentations Pres and

finitely axiomatizable theories FinAx by requiring respectively that Ψ be finite

or Th∆(Ψ) be finitely axiomatizable for each Ψ ⊆ G(∆). In practice, we often

work with the respective sub-categories of Th.

A formal account to logic would not be accurate without treating the no-

tions of model and satisfaction. The theory of institutions proposed by Goguen

and Burstall (1992) can be used to deal with these semantic notions in an ab-

stract manner:

Definition 2.2.4 (Institution) An institution is a 4-tuple (Sig, G, Mod, |=)

where:

• Sig is a category of signatures;

• G : Sig → Set is a functor defining the language grammar;

• Mod : Sig → CATop is a functor associating to each ∆ in obj Sig a

category Mod(∆) = Mod∆ of models of ∆;

• |= is a function associating to each ∆ in obj Sig a binary satisfaction

relation |=∆⊆ obj Mod∆×G(∆). For any τ : ∆→ ∆′, p ∈ G(∆) and θ′ in

obj Mod∆′ , θ′ |=∆′ τ#(p) iff Mod(τ)(θ′) |=∆ p.

3If τ : (∆, Ψ)→ (∆, Ψ′) is a faithful morphism, then it captures the conservative extension
Th∆(Ψ) ⊆ Th∆(Ψ′).

2.2. Logic in General 25

In institutions, the category of signatures and the grammar functor are similar

to the components of an entailment system, but the requirement of vocabulary

closure is absent because this neither can be a general model-theoretic property

nor does it appear in the original definition of institution. Actually, it would

falsify any Upward Skolem-Löwenheim theorem (see van Dalen (1994) for an

example). The functor Mod associates signatures to categories of models be-

longing to obj CATop, the dual to the category of categories CAT with all

morphisms reversed. The function |= is analogous to ` and each satisfaction re-

lation respects the semantic counterpart to strong-structurality which requires

that truth be invariant under change of notation, the satisfaction condition.

Whenever this semantic condition is too strong to be obtained, e.g. in weakly

structural entailment systems, we shall indicate how it can be approximated.

The definition of the functor Mod and the function |= can be extended to

the categories of theories induced by the signatures of a specific full entailment

system. For instance, Mod : Th → Catop associates each theory Th∆(Ψ) to

a category of models ModTh∆(Ψ), where θ in obj ModTh∆(Ψ) if and only if

we have θ |=∆ p for every p ∈ Th∆(Ψ). The semantic consequence relation

|=∆⊆ P (G(∆)) × G(∆) is defined as Ψ |=∆ p if and only if θ |=∆ p whenever

θ |=∆ q for every q ∈ Ψ, for every θ in obj Mod∆. For a fixed θ, we write Ψ |=θ
∆ p.

This relation generates a semantic notion of theory Th
|=
∆(Ψ) complementing

Th`∆(Ψ).

A logic is defined by putting together a full entailment system and an

institution so that they share the same category of signatures, but the closure

of the syntactic grammar is semantically forgotten, obeying the following:

Definition 2.2.5 (Logic) A logic is a 9-tuple (Sig, L, E , G`, `, G |=, Mod, |=,

α) where:

• (Sig, L, E , G`, `) is a full entailment system;

• (Sig, G |=, Mod, |=) is an institution;

• α : G` ⇒ G |= is a natural isomorphism;

such that the soundness condition holds: for any ∆ ∈ obj Sig and each Ψ∪{p} ⊆

G`(∆), Ψ `∆ p implies {α∆(q)|q ∈ Ψ} |=∆ α∆(p). If, in addition, the converse

of this condition holds, then the logic is said to be complete.

We say that an entailment relation is compact if and only if for every ∆, Ψ `∆ p

implies the existence of a finite Ψ′ ⊆ Ψ such that Ψ′ `∆ p. The same applies to

semantic consequence relations. Sometimes, due to the failure of compactness,

26 Chapter 2. Proof Theory and Software Development

completeness as defined above cannot be obtained. In this sense, our definition is

of a strong notion occasionally called adequacy. It may be useful to study weak

and medium completeness notions where Ψ is considered to be always empty

and finite, respectively. It also makes sense to talk about relative soundness or

completeness notions, where the entailment and satisfaction relations of distinct

logics are related according to the conditions in the definition above. The dif-

ferences between G` and G|= as well as between Th`∆ and Th
|=
∆ for each ∆ in

obj Sig are normally ignored for the sake of simplicity.

As discussed in the previous section, we consider the notion of proof calcu-

lus to be the basis upon which our approach to software development is defined.

Each proof calculus provides a systematic method, defined in terms of the no-

tions of axiom schema and inference rule, for determining whether or not a single

sentence is a consequence of a set of sentences. It also appears to be reasonable

to say that, when an entailment system is associated to a proof calculus, this

last structure generates each theory and supports their manipulation, in that

the calculus provides rigorous tools for classifying theory morphisms and find-

ing derived properties. Some attempts to capture the notion of proof calculus

in generic form have already appeared in the literature. Meseguer (1990), to

abstract away the structure of each derivation through category theory, used a

generalised formal construction called multi-category. A distinct approach was

adopted by Harper et al. (1994), who studied the representation of proof calculi

using judgement rules of a particular type theory. Here, since we do not want to

commit ourselves to any additional formal apparatus, a set-theoretic definition

is proposed below:

Definition 2.2.6 (Proof calculus) A proof-calculus is an 8-tuple (Sig, L, E ,

G, `, Ax, `, Pr) where:

• (Sig, L, E , G, `) is an entailment system;

• Ax : Sig→ Set is a functor assigning each signature ∆ in obj Sig to a set

of logical axioms Ax(∆) ⊆ G(∆) such that p ∈ Ax(∆) implies { } `∆ p.

Ax(∆) is generated by a finite set of axiom schemas written in terms of

schematic variables ranging over G(∆) and logical symbols in L;

• ` is a function associating each ∆ in obj Sig to a binary derivability

relation `∆ ⊆ P+ (P (G(∆))× G(∆)) × G(∆) such that Ψ ` p whenever

(χ, p) ∈ `∆ and Ψ = {q|∃δ · (δ, q) ∈ χ}. Each p is a conclusion, Ψ and δ

are sets of premises and of assumptions to be discharged respectively. `∆

is generated by the application of a finite set of inference rules written in

terms of schematic variables and logical symbols;

2.2. Logic in General 27

• Pr is a function associating each ∆ in obj Sig and Ψ ∪ {p} ⊆ G(∆) to a

set Pr∆(Ψ, p) of tree-structured derivations of a conclusion p from a set of

assumptions or hypotheses Ψ. Pr∆(Ψ, p) is the smallest set of derivations

organised in proof steps according to the following inductive scheme:

1. if p ∈ Ψ then ({ }, p) ∈ Pr∆({p} , p) (assertion of an assumption);

2. if p ∈ Ax(∆) then ({ }, p) ∈ Pr∆({ }, p) (use of an axiom schema);

3. if χ = {(δi, pi)|δi ∪ {pi} ⊆ G(∆)} (a set of derivation contexts), D =

{(di, pi) ∈ Pr∆(ψi ∪ δi, pi)|ψi ⊆ Ψ, ∃c ∈ χ · c = (δi, pi)} (a set of

derivations) and χ `∆ p then (D, p) ∈ Pr∆(Ψ, p) (application of an

inference rule)4;

such that the faithfulness condition is postulated: Pr∆(Ψ, p) 6= { } and

∀(D, p) ∈ Pr∆(Ψ, p) · (D = { } → Ψ = { }) iff Ψ `∆ p.

A proof of p over a presentation (∆, Ψ) is a derivation of p with Ψ as the set

of hypotheses. We say that p is derivable from Ψ in this case. A generic proof

of p is a derivation of p with the empty set of hypotheses, in which case p is

said to be provable. A proof calculus is said to be formal only if derivations,

which have finite length, are composed solely by the application of inference

rules taking a finite number of premises. Otherwise, the calculus is considered

to be semi-formal, differing from informal structures just because of its rigorous,

though not finitary, definition. An example of a semi-formal calculus is that of

ω-logic, defined by Chang and Keisler (1977) as an extension of classical first-

order natural deduction with an infinitary inference rule which takes an infinite

number of instances of a formula as premises, one for each natural number, and

allows the conclusion of its universal generalisation as a quantified sentence.

The definition of Pr deserves further attention. A set of application exam-

ples is provided in Figure 2.4 to show that Pr is general enough to capture the

usual proof calculus styles. As stated above, Pr∆(Ψ, p) is a set of derivations

of a conclusion from a set of assumptions. We use this set to define a family

of entailment relations by postulating a faithfulness condition. Note that we

disregard single assertions of assumptions as generating entailments to prevent

them from always being reflective. We could have also assumed the existence of

a set of logical labels and considered labelled sentences and proof steps. That

4It is worthwhile mentioning that we consider the different ways of dealing with assumptions
using inference rules as the only essential distinction between the usual proof calculi styles:
while Hilbert-style calculi do not allow us to discharge assumptions using inference rules and
prioritise in this way axiom schemas, natural deduction rules discharge assumptions explicitly
and sequent calculi rules internalise this treatment.

28 Chapter 2. Proof Theory and Software Development

Hilbert style:

1. sa
2 : p ∧ (q ∨ r)↔ (p ∧ q) ∨ (p ∧ r) DIST-AO (see Appendix-I)

2. (Da
1 , sa

1) : p ∧ (q ∨ r)→ (p ∧ q) ∨ (p ∧ r) IFF-E 1 (see Appendix-I)

This annotated generic proof is justified by the fact that sa
2 ∈ Ax(∆) (first case in

Definition 2.2.6) and that (Da
1 , sa

1) ∈ Pr∆({ }, sa
1) (second case in the definition),

allowed by the schema and rule stated in Appendix I. Note that Da
1 = {({ }, sa

2)}.

Natural deduction:

sb
4.1 : [p ∧ (q ∨ r)]

∧E

(Db
3.1, s

b
3.1) : q ∨ r

sb
6.1 : [p ∧ (q ∨ r)]

∧E

(Db
5.1, s

b
5.1) : p sb

5.2 : [q]
∧I

(Db
4.1, s

b
4.2) : p ∧ q

∨I

(Db
3.2, s

b
3.2) : (p ∧ q) ∨ (p ∧ r) (Db

3.3, s
b
3.3)

∨E

(Db
2, s

b
2) : (p ∧ q) ∨ (p ∧ r)

→ I

(Db
1, s

b
1) : p ∧ (q ∨ r)→ (p ∧ q) ∨ (p ∧ r)

where (Db
3.3, s

b
3.3)
∼= (Db

3.2, s
b
3.2).

The proof above is justified in a similar way to the Hilbert-style case. The applica-
tion of inference rules, which generate each Di.j , is permitted by the natural deduc-
tion rules. The novelty in this case is the discharge of assumptions. For example,
note that (Db

3.2, s
b
3.2) ∈ Pr∆({sb

6.1, s
b
5.2}, s

b
3.2), (Db

3.3, s
b
3.3) ∈ Pr∆({sb

6.2, s
b
5.4}, s

b
3.3).

Therefore, due to the ∨E rule, {({}, sb
3.1), ({s

b
5.2}, s

b
3.2), ({s

b
5.4}, s

b
3.3)} `∆sb

2 and then
(Db

2, s
b
2) ∈ Pr∆({sb

4.1}, s
b
2), because sb

4.1
∼= sb

6.1
∼= sb

6.2.

Sequent calculus: We assume the existence of a logical symbol ⇒ in each sentence.

sc
5.1 : p⇒ p

W R

(Dc
4.1, s

c
4.1) : p⇒ p, q ∨ r

∧L

(Dc
3.1, s

c
3.1) : p ∧ (q ∨ r)⇒ p, q ∨ r

sc
7.1 : p⇒ p

W L

(Dc
6.1, s

c
6.1) : p, q ⇒ p (Dc

6.2, s
c
7.2)

∧R

(Dc
5.1, s

c
5.2) : p, q ⇒ (p ∧ q)

∨R

(Dc
4.2, s

c
4.2) : p, q ⇒ (p ∧ q) ∨ (p ∧ r) (Dc

4.3, s
c
4.3)

∨L

(Dc
3.2, s

c
3.2) : p, q ∨ r ⇒ (p ∧ q) ∨ (p ∧ r)

CUT

(Dc
2, s

c
2) : p ∧ (q ∨ r)⇒ (p ∧ q) ∨ (p ∧ r)

→ R

(Dc
1, s

c
1) :⇒ p ∧ (q ∨ r)→ (p ∧ q) ∨ (p ∧ r)

where (Dc
4.3, s

c
4.3)
∼= (Dc

4.2, s
c
4.2) and (Dc

6.2, s
c
7.2)
∼= (Dc

6.1, s
c
7.1).

Disregarding the treatment of assumptions, this example is similar to the preceding
one. The terminal sentences in sub-derivations, e.g. s5.1 and s7.1, belong to Ax(∆).
These are generated by a standard schema in sequent calculi, p⇒ p, p ∈ G(∆).

Figure 2.4: Example of distinct proof calculi styles.

2.2. Logic in General 29

would be to record the inference rule justifying each step in a derivation, which

is sometimes useful when there are many different ways to derive a conclusion

from the same set of premises and also to provide rigorous control over discharg-

ing of assumptions in natural deduction like calculi. We prefer to avoid this

additional complexity for the sake of simplicity. Furthermore, it is possible to

relax the faithfulness condition to introduce new soundness and completeness

relationships as proposed by Avron (1991), this time between entailment system

and proof calculus. We consider the equivalence above to be essential because

the entailment and satisfaction relations of a logic are already related according

to these conditions. Giunchiglia and Serafini (1994) study derivability relations

where premises and conclusion belong to distinct logical systems. An extension

of our definitions towards this direction is clearly subject for further work.

It is also important to mention that, for a given signature ∆, `∆ does not

inherit the properties of the underlying entailment relation. It only captures

particular applications of inference rules of the proof calculus, for which reflex-

ivity, say, would mean that for each premise there is a rule which allows us to

repeat such a sentence in the subsequent proof step, a requirement which is not

acceptable in general5. Seen as a binary relation, Pr∆ inherits all the properties

of `∆. By abuse of notation, p ∈ Ax(∆) is normally written as `∆ p. Moreover,

we write Ψ `∆ p or `(∆,Ψ)p whenever Pr∆(Ψ, p) is not empty.

In the remainder of the chapter, we will be interested in providing presen-

tations for proof calculi of some interesting logical systems:

Definition 2.2.7 (Logical System) A logical system is a 12-tuple (Sig, L, E ,

G`, `, G |=, Mod, |=, α, Ax, `, Pr) where:

• (Sig, L, E , G`, `, G |=, Mod, |=, α) is a logic;

• (Sig, L, E , G`, `, Ax, `, Pr) is a proof calculus;

A logical system is considered to be effective if provability is decidable for the

underlying proof calculus, meaning that it is possible to write an algorithm

which decides whether or not there is a generic proof for each sentence.

An inference rule Ψ `∆P , Ψ and P written in terms of schematic variables

and logical symbols, is considered to be derivable in a logical system S if and only

if for every pair of instances (ψ, p) of (Ψ, P), Pr∆(ψ, p) is not empty. The same

rule is said to be admissible in S if and only if |=∆ p whenever |=∆ ψ. These

definitions are standard in the literature (Rybakov 1997). Clearly, derivable

rules are admissible by definition. Derived rules make the application of a proof

5But see Friedman and Sheard (1995) for a “proof calculus” with such rule.

30 Chapter 2. Proof Theory and Software Development

? ?

�����������������)

�
�

�
�

��+

Q
Q
Q
Q
QQs

Systems

Logical
Systems

Proof
Calculi

InstitutionsEntailment

Logics

Figure 2.5: A taxonomy of logical structures.

calculus easier in practice while the incorporation of an admissible rule results

in a more powerful proof theory. We deal with both kinds of rules in the sequel.

At this point, we should remind the reader that we are not attempting to

propose an original formulation of general logic. Rather, we have made an effort

to establish practical foundations in order to support a rigorous investigation of

many different logical systems which are to be introduced. Providing definitions

for general logical structures interconnected as depicted in Figure 2.5 allows us

to study meta-logical properties in a logic independent manner, to determine to

what extent — based on what assumptions — general properties hold and to

transport these results elsewhere whenever possible and necessary.

2.3 Classical Propositional Logic

From this section onwards, our purpose will be to define a logical system to sup-

port the design of extensible systems. We shall define some distinct entailment

systems in terms of their respective Hilbert-style proof calculi and examine how

they are connected to each other and used in isolation, postponing the definition

of the associated model-theoretic notions until the final sections, after having

defined the whole proof-theoretic structure. We begin by looking at classical

propositional logic. Since this logic is quite well-understood (a comprehensive

study is developed by van Dalen (1994)), we take advantage of this fact to illus-

trate how a proof-theoretic approach leads us to define an entailment system.

2.3. Classical Propositional Logic 31

Definition 2.3.1 (Classical Propositional Logic) The entailment system of

classical propositional logic, CPL for short, is defined as follows:

• SigCPL ∼= FinSet (i.e., SigCPL is isomorphic to the category of finite sets);

• LCPL def
= {¬,→, (,)};

• ECPL ∼= idSigCPL. For each ∆ in obj SigCPL, each element of ECPL(∆) is

called a proposition symbol;

• For each ∆ in obj SigCPL, GCPL(∆) is a set of propositions defined by P CPL

as follows, provided that p ∈ ECPL(∆):

P CPL ::= p | ¬P CPL | (P CPL → P CPL)

We shall ignore superfluous parentheses in propositions and adopt the

usual precedence conventions. We also use the following abbreviations for

each {p, q} ⊆ GCPL(∆):

(D1->) > def
= p→ p;

(D2-⊥) ⊥ def
= ¬>;

(D3-OR) p ∨ q def
= (¬p→ q);

(D4-AND) p ∧ q def
= ¬(p→ ¬q);

(D5-IFF) p↔ q def
= (p→ q) ∧ (q → p) [or ¬((p→ q)→ ¬(q → p))];

• For each ∆ in obj SigCPL, the entailment relation `CPL

∆ is generated by the

following proof calculus, provided that {p, q, r} ⊆ GCPL(∆)6:

(A1-I) `CPL

∆
p→ (q → p) (weakening);

(A2-I) `CPL

∆ (p→ (q → r))→ ((p→ q)→ (p→ r)) (distribution);

(A3-N) `CPL

∆
(¬p→ ¬q)→ (q → p);

(R1-MP) {p, p→ q} `CPL

∆ q (modus ponens or detachment).

CPL may also be seen as a non-conservative extension of minimal intuitionistic

logic, which is generated by schemas A1-I, A2-I and rule R1-MP only.

Our (partial) definition of CPL is slightly unusual. van Dalen (1994)

uses a unary logical connective ⊥ denoting falsehood, which is admittedly not

essential. Another important distinction is in relation to the propositional proof

calculus adopted by Hilbert and Ackermann (1928), where an additional uniform

substitution rule is proposed. They mention in that work:

6It is worthwhile recalling that Hilbert-style calculi do not have inference rules whereby
assumptions can be discharged. This means that δ as in Definition 2.2.6 is empty for R1-MP.

32 Chapter 2. Proof Theory and Software Development

We may substitute for a sentential variable any sentential combina-

tion provided that the substitution is made whenever that sentential

variable occurs. (Hilbert and Ackermann 1928)

Since we use schematic variables like {p, q, r} ⊆ GCPL(∆) in our axiomatisation,

substitution would be superfluous here. Our choice also makes replacement by

equivalents a derivable rule, meaning that it is possible, based on the axiom

schemas and inference rules of our proof calculus, to show that an additional

rule replacing formulas by logically equivalent ones does not allow us to derive

more properties than the original axiomatisation. The statement of this rule,

which is often useful in constructing derivations, appears in Appendix I.

In order to ensure that the entailment system above is really well-defined,

it is necessary to show that it complies with the generic definition provided in

the previous section. We have to prove that propositional signatures and the

respective morphisms indeed determine a category. We develop below the proof

of this straightforward result just as a matter of completeness. In fact, we show

in addition that the category of finite sets has the desirable property of being

finitely co-complete, which has been identified by Goguen and Burstall (1992)

as a necessary condition to support specification in the large:

Theorem 2.3.2 (Category of Finite Sets) The collections of finite sets and

set-valuated functions define a category FinSet. In addition, FinSet has both

initial element and pushouts, being in this way finitely co-complete.

Proof: Given FinSet-morphisms f and g, X
f
→ Y and Y

g
→ Z, the function

(g ◦ f)(x) def
= g(f(x)), x ∈ X, is the composition of f and g. Considering also a

FinSet-morphism h, Z
h
→W , the following diagram commutes (so ASS holds):

-��
��

��*

�
�
�
�
�
�
�
�/

S
S
S
S
S
S
S
Sw

??

HH
HH

HHY

Y Z
g

hh ◦ g

W

X

h ◦ (g ◦ f)(h ◦ g) ◦ f

f g ◦ f

Moreover, for each X in obj FinSet, there is an X
idX→ X such that ∀x ∈ X ·

idX(x) = x, the identity function over X. Given FinSet-morphisms f and g,

Y
f
→ X and X

g
→ Z, the following diagram commutes (so ID holds):

2.3. Classical Propositional Logic 33

- -

6

?

@
@
@
@
@@R�

�
�
�
���

f g

idXidX

idX ◦ f

X

X

Y Z

g ◦ idX

The associative and identity axioms obtain, showing that FinSet is a category.

We know that { } belongs to obj FinSet. For every X in obj FinSet,

there is a FinSet-morphism f , { }
f
→ X, such that ∀y ∈ { }·∃! x ∈ X ·f(y) = x,

because this formula characterising empty functions holds vacuously. Suppose

that there is another g in morph FinSet, { }
g
→ X and ∀y ∈ { }·∃! x ∈ X ·g(y) =

x. The extensional definition of function equality says that for each pair A
f,g
→ B,

f = g if and only if ∀x ∈ A · f(x) = g(x), but for A = { } this property holds

vacuously. This ensures that f = g, which means that there is exactly one arrow

from { } to any other set. Thus, { } is the initial object of FinSet.

Assume given the FinSet-objects X, Y , Z and the FinSet-morphisms f0,

g0, X
f0→ Y andX

g0→ Z. Construct W in obj FinSet, f1 and g1 in morph FinSet,

Y
f1→W and Z

g1→ W , so that:

∀x ∈ X · (f1 ◦ f0)(x) = (g1 ◦ g0)(x) (2.3.1)

∀w ∈ W · ∃y ∈ Y · (f1(y) = w) ∨ ∃z ∈ Z · (g1(z) = w) (2.3.2)

The set W = Y ⊕X Z is called the amalgamated sum of Y and Z (after possible

renaming). For each triple P = (W ′, f2, g2), W
′ in obj FinSet and FinSet-

morphisms f2, g2 with Y
f2→W ′ and Z

g2→W ′, such that condition (2.3.1) obtains

when f1 and g1 are substituted by f2 and g2, there is a h in morph FinSet,

W
h
→W ′, such that f2 = h ◦ f1 and g2 = h ◦ g1. This function is defined as:

h(x) def
=

{

f2(y) if f1(y) = x

g2(y) if g1(y) = x

Indeed, h is a well-defined function, due to condition (2.3.2), which guarantees

that every element of the domain W of h has an image in W ′, and to the fact

that f2(y) = h(x) = g2(y) whenever f1(y) = x = g1(y), which ensures that the

image of h is uniquely determined.

If there is another h′ in morph FinSet, W
h′

→W ′, obeying the same condi-

tions, then h′◦f1 = h◦f1 and h′◦g1 = h◦g1. In other terms, ∀y ∈ Y ·(h′◦f1)(y) =

(h ◦ f1)(y) and ∀z ∈ Z · (h′ ◦ g1)(z) = (h ◦ g1)(z). Because of the definition of

W , ∀w ∈ W · h′(w) = h(w). Due to extensionality, h′ = h. So, h is the unique

function up to isomorphism making the following diagram commute (the inner

diamond is called a pushout diagram):

34 Chapter 2. Proof Theory and Software Development

@
@
@
@R

XXXXXXXXXXXXXXz�
�
�
��

@
@
@
@R �

�
�
��

���
���

���
���

��:
-

f0

g0

Y

X W W ′

Z

f1

g1

f2

g2

h

Using the fact that a category with initial element (e.g. { }) and pushouts

(e.g. Y
f1→ W

g1← Z for Y
f0← X

g0→ Z) has finite colimits for all finite dia-

grams (Barr and Wells 1990), we conclude that FinSet is finitely co-complete.

(FinSet Category)

The importance of the proof above is more pragmatic than theoretical.

Because the remainder of the thesis is only concerned with finite sets possi-

bly having some additional structure to serve as signatures and with structure-

preserving signature morphisms, we can reuse this result to show that each

particular category of signatures is finitely co-complete. In practice, this means

that herein it will always be possible to take two signatures and compute their

composition by identifying the extra-logical symbols they share.

To ensure that the definition of CPL yields a full entailment system, it

remains to be shown that the designated properties of each entailment relation

are supported by the chosen proof calculus. We show that for any {p, q, r} ⊆

GCPL(∆) there is a proof which complies with our axiomatisation and enables

us to obtain such properties for each ∆ in obj Sig. This is verified as follows,

where (1), (2) and (3) refer to the cases in the definition of Pr7:

reflexivity: From (1) we can infer that ({ }, p) ∈ Pr∆({p} , p). Moreover, the

generic proof of REFL : p→ p stated in Appendix I allows us to say that

7Together with R1-MP, the following axiomatisation of a linear implicative calculus ex-
tracted from (Gabbay and de Queiroz 1992) exemplifies Hilbert-style presentations which do
not generate full entailment systems:

(REFL) p→ p (reflexivity);

(PERM) (p→ (q → r))→ (q → (p→ r)) (permutation);

(LTRAN) (p→ q)→ ((r → p)→ (r → q)) (left-transitivity);

(RTRAN) (p→ q)→ ((q → r)→ (p→ r)) (right-transitivity).

Namely, if we read → as −◦, it is easy to recognise a fragment of linear logic (Girard 1987),
which lacks monotonicity. By analysing this axiomatisation, we conclude that the usual defi-
nition of derivations in Hilbert-style calculi, possibly disconnected linearly ordered sequences
of steps, is too strong: every entailment relation so defined is automatically made reflexive
and monotonic. That is why connectedness is required in (3) and the entailments generated
by derivations containing a single assertion are disregarded by our definition. In this way, only
the proposed calculus can help us to prove the properties required in full entailment systems.

2.3. Classical Propositional Logic 35

there exists (D, p → p) ∈ Pr∆({ }, p → p), based on (2). Applying R1-

MP in (3) using the previous sentences as premises, we conclude that there

is a non-empty D′ such that (D′, p) ∈ Pr∆({p} , p) and, by faithfulness,

that `CPL is reflexive;

monotonicity: The definition of monotonicity allows us to assume that (i)

there is (D, p) ∈ Pr∆(Ψ1, p), due to the faithfulness condition, and (ii)

Ψ1 ⊆ Ψ2. Choosing any q ∈ Ψ2, (1) renders (iii) ({ }, q) ∈ Pr∆({q} , q).

We also have ({ }, p→ (q → p)) ∈ Pr∆({ }, p→ (q → p)), due to the use

of A1-I in (2). Using this fact to support two consecutive applications

of R1-MP in (3), first together with (i) and later with (iii), we can infer

that Ψ1 ∪ {q} `∆ p due to faithfulness. After iterating this process for all

the other elements of Ψ2 not in Ψ1, taking the outcome of each previous

step as the input, we conclude that `CPL is monotonic because of (ii);

transitivity: The definition of transitivity allows us to assume that (i) there

is (D1
p, p) ∈ Pr∆(Ψ1, p) for each p ∈ Ψ2, and (ii) there is d = (D2

q , q) ∈

Pr∆(Ψ1 ∪ Ψ2, q), both due to faithfulness. We show that there is a d′ =

(D′, q), d ∈ Pr∆(Ψ1, q), obtained from d by recursion. If d = ({ }, q)

such that q ∈ Ψ2, use A1-I as in the case of reflexivity to show that d′ =

(D1
q , q) ∈ Pr∆(Ψ1, q) based on (i). If d = ({ }, q) such that q ∈ Ax(∆)∪Ψ1,

d′ = d. If d = ({(Dr, r), (Dr→q, r → q)}, q), apply the same process to Dr,

Dr→q and obtain the following d′ = ({(D′
r, r), (D

′
r→q, r → q)}, q):

1. r Dr

2. r → q Dr→q

3. (r → q)→ ((r → r)→ (r → q)) LTRAN

4. (r → r)→ (r → q) R1-MP 2, 3

5. r → r REFL

6. r → q R1-MP 5, 4

7. q R1-MP 1, 6

where REFL and LTRAN are verified based on the axiomatisation of

CPL. Note that this process is applicable to extensions of CPL wherein

none of the above is the case. For any other d = (D1
q , q), apply the same

process to each d′ ∈ D1
q and construct (D1′

q , q) accordingly. Because the

first case in the definition of Pr∆ is the only way of introducing hypotheses

in a derivation and we have eliminated all the sentences of Ψ2 from d in

d′, we conclude that d′ ∈ Pr∆(Ψ1, q). By faithfulness, `CPL is transitive;

36 Chapter 2. Proof Theory and Software Development

strong-structurality: Assume that Ψ `
∆
p. For each ∆

τ
→ ∆′ in morph Sig,

we prove that, if d = (D, p) ∈ Pr∆(Ψ, p) then d′ = (τ(D), τ#(p))|, d ∈

Pr∆′(G(τ)(Ψ), τ#(p)), for τ# as in Definition 2.2.2. Hence, applying the

faithfulness condition twice, we obtain G(τ)(Ψ) `
∆′ τ#(p), which means

that `CPL is strongly structural. Assume d given. Due to the minimality

of Pr∆(Ψ, p), d corresponds to one of the following cases:

• d = ({ }, p) and p ∈ Ψ. In this case, d′ = ({ }, τ#(p)), d ∈ Pr∆′(G(τ)(Ψ),

τ#(p)) (i.e., assertions of assumptions are translated into similar as-

sertions);

• d = ({ }, p) and p ∈ Ax(∆). The axiomatisation of CPL allows us to

say, providing {s, t, u} ⊆ GCPL(∆), that τ#(p) is either:

1. τ#(s)→ (τ#(t)→ τ#(s)) if p ∈ Ax(∆) because of A1-I;

2. (τ#(s) → (τ#(t) → τ#(u))) → ((τ#(s) → τ#(t)) → (τ#(s) →

τ#(u))) if p ∈ Ax(∆) because of A2-I ;

3. (¬τ#(s) → ¬τ#(t)) → (τ#(t) → τ#(s)) if p ∈ Ax(∆) because of

A3-N;

In any case, τ#(p) ∈ Ax(∆′). So, d′ = ({ }, τ#(p)), d ∈ Pr∆′(G(τ)(Ψ),

τ#(p)) (i.e., instances of schemas are translated into axioms);

• d = (D, p) such that D 6= { }. Apply the same process above to

each di ∈ D and obtain τ(D). Due to the axiomatisation of CPL,

τ(D) must have the form {(Dτ#(q), τ
#(q)), (Dτ#(q)→τ#(p), τ

#(q) →

τ#(p))}. By applying R1-MP in (3) we obtain d′ def
= (τ(D), τ#(p)) ∈

Pr∆′(G(τ)(Ψ), τ#(p)) (i.e., applications of inference rules are trans-

lated accordingly).

The verification of the result above was not developed in the most econom-

ical way. It was devised as such not only to spot a set of provable theorems which

ensure the properties of full entailment systems, but also to shed some light on

what requires attention in developing similar results for other systems. Reflex-

ivity, monotonicity and transitivity do not demand all the axiom schemas of

CPL and are still valid considering some weaker axiomatisations. On the other

hand, if the schemas and rules of CPL are stated based on the grammar of an

extended Hilbert-style calculus, the properties above do not need to be exam-

ined again because their verification does not depend on the additional structure

of the proof calculus. We adopt this rationale to argue that all the entailment

systems described in the sequel are reflexive, monotonic and transitive.

The case of structurality is more complex. To prove that CPL is strongly

structural, we had to examine all the applications of inference rules and instances

2.3. Classical Propositional Logic 37

of axiom schemas showing that they are translated into similar constructions

based on the target signature of each morphism. This guarantees that all the

theorems of each CPL presentation are translated by each morphism into the-

orems of its target presentation. Even after having verified this result for the

axiomatisation of CPL, we are still obliged to prove the same for the remaining

schemas and rules of each proof calculus wherein this axiomatisation appears

embedded. To simplify this task, it is enough to show that no schema or rule

strictly depends on the symbols existing in the underlying signature. To un-

derstand why, note that the only possible distinction between the theories of a

presentation and of its translation along a morphism may appear because some

theorems are generated by schemas or rules stated in terms of the set of symbols

in the original signature, which can be expanded by a morphism. Thus, the cor-

responding theorems in the theory of the target presentation would not exist.

We shall study a weakly structural entailment system in the next chapter.

Even though classical propositional logic is not highly expressive, the func-

tionality of real systems can already be represented in specifications to some

extent. Suppose that CPL is to be applied in the design of a replacement for a

mechanical system presently in use by a supermarket. The main purpose of the

system is to prevent trolleys from being stolen. To be allowed to use a trolley,

each customer is required to leave a special purpose identification card as a de-

posit in a safe so as to release the attached trolley immediately. As soon as a

trolley is locked again to the system, the card can be collected.

We adopt here a design discipline prescribing the representation of each

object in a problem domain as a separate theory presentation, following in this

way Fiadeiro and Maibaum (1992). In the supermarket system, it is easy to

identify these objects as the locker, the safe and the mechanical device which

obliges the first two objects to behave in a coordinated manner. In Figure 2.6,

each of these objects is described by a specification consisting of a signature and a

set of propositional axioms. The propositional symbols in each signature denote

both the state and the instantaneous events occurring in the system. Axioms

define how these entities are related to each other. For instance, according to

(4.1), which constrains the occurrence of an action according to an attribute

value, only when a trolley is currently locked to the system can it be released.

Another example is provided by (2.1), saying that the occurrence of actions

push and pull is mutually exclusive. This separation of signature symbols into

attributes and actions is regarded in this chapter just as syntactic sugar to make

specifications more readable, meaning that at this point these families of symbols

do not have any distinguished logical role.

38 Chapter 2. Proof Theory and Software Development

Specification Device
actions push,pull
axioms
push→ ¬pull (2.1)

End

Specification SafeCPL
attributes card in

actions deposit, collect
axioms
collect → card in (3.1)
deposit→ ¬collect (3.2)

End

Specification LockerCPL
attributes trolley in

actions release, lock
axioms
release→ troley in (4.1)
release→ ¬lock (4.2)

End

Specification SystemCPL
actions use, return
attributes trolley in, card in

axioms
use→ ¬return (5.1)
use→ trolley in (5.2)
return→ card in (5.3)

End

Figure 2.6: Specification of the supermarket system in CPL.

@
@

@@I

�
�
���

�
�
���

@
@

@@I
SystemCPL

SafeCPLLockerCPL

Device

τ
#
1 τ

#
2

σ
#
1 σ

#
2

(a)

�

�

-

-

-

�

LockerCPL⊕ SafeCPL

use

return

release

collect

deposit

lock

trolley in trolley in

card incard in

σ1 σ2

σ1 σ2

σ1

σ2

-

-

�

�
release

collect

deposit

lock

push

pull

DeviceLockerCPL SafeCPL
τ1

τ1

τ2

τ2

(b)

Figure 2.7: Configuration of the supermarket system in CPL.

2.3. Classical Propositional Logic 39

We use specification morphisms to connect distinct modular theory pre-

sentations and construct in an incremental way descriptions of complex systems.

The signature morphisms in Figure 2.7 (b) describe how the specification sym-

bols above are related to each other by way of translation. It is easy to see there

that the same set of real events is represented by the pairs of action symbols

in each specification, because they are equalised by the morphisms in the dia-

gram. Indeed, when the trigger of the mechanical device is pushed, the trolley

is released and the card deposited inside the safe. In effect, they correspond to

the same complex event. When the translations above are applied in a compo-

sitional manner to axioms, specification morphisms are induced defining a way

of putting the set of specifications together to represent the whole system, as

presented in part (a). Axiom (2.1) is translated not only into (3.2) but also into

(4.2), justifying the fact that the actions of both LockerCPL and SafeCPL

are mutually exclusive.

Identifying the same symbol with those of other specifications, we ensure

that this symbol will represent a shared resource when the specifications are col-

lapsed into a single object. In our example, all the action symbols of Device,

pull and push, are associated to the symbols of LockerCPL and SafeCPL,

because the entire device is a shared object. When we require in addition that

constructions like LockerCPL
σ

#
1→ SystemCPL

σ
#
2← SafeCPL be co-limits, a

generalised form of pushout possibly connecting several objects in a co-cone di-

agram, we do not need to be concerned with the exact definition of the resulting

entities because it is provided up to isomorphism. In our example, SystemCPL

is only a representative of the class of theory presentations induced by the con-

nection of LockerCPL and SafeCPL through Device and the given mor-

phisms. Any other object in this class could be used in its place and the same

is true concerning the morphisms σ#
1 and σ#

2 . Of course, we are only allowed to

use such CPL constructions, and we always do so hereafter, because we know

they exist, due to the co-completeness of FinSet.

So far, we have concentrated on showing that CPL is a useful specification

tool. In the formal design of software systems, we also face the problem of

verifying characteristic properties. For instance, we may want to prove that the

system described above will allow some customer action only if either a trolley

or a card is currently held by the system. This can be stated as follows:

`SystemCPL use ∨ return→ trolley in ∨ card in (2.3.3)

We use the structure of SystemCPL and the specification axioms to verify this

property. We also rely on helpful theorems and rules stated in Appendix I:

40 Chapter 2. Proof Theory and Software Development

Proof:

1. release→ trolley in 4.1 (LockerCPL)

2. use→ trolley in ∨ card in OR-R σ
#
1 (1) (SystemCPL)

3. collect → card in 3.1 (SafeCPL)

4. return→ trolley in ∨ card in OR-R σ
#
2 (3) (SystemCPL)

5. use ∨ return→ trolley in ∨ card in OR-L 2, 4 (SystemCPL)

The application above of induced specification morphisms to translate the con-

sequence obtained in each proof step is worth noticing. It is in this way that we

can enlarge the language of LockerCPL and apply the rule OR-R to include

an additional disjunct in the right hand side of the first implicative assertion.

The resulting sentence belongs to the theory of SystemCPL. Much in the

same way, a similar conclusion is obtained from the SafeCPL axiom. If we

consider that this verification process started from (2.3.3), we are also allowed

to say that the proof of that property was decomposed into a set of proofs of

simpler properties by the proof calculus and the given morphisms. This way of

decomposing proofs was first studied by Fiadeiro and Maibaum (1992).

It is interesting to note that the morphisms employed above in the con-

figuration of the system are all faithful. For instance, because (2.1) belongs

to Device, all the properties involving the symbols in this presentation when

translated by τ1 into LockerCPL can already be derived within Device. This

means that the object does not have more properties when placed in the com-

plex configuration. It is useful to leave the possibility of using non-faithful

morphisms open so that some properties of specified objects emerge only when

they are placed in certain configurations. There are two ways of supporting this

feature: to use looser specifications (with a weaker set of axioms) or to adopt

a weakly structural entailment system. Both cases shall be exploited in the

remainder of the thesis.

2.4 Propositional Linear Time Logic

We discovered in the previous section that classical propositional logic is useful

in dealing with the finite state and the relations between instantaneous events

of real systems. However, the same logic turns out to be less useful to represent

change and time dependent behaviour. Essentially, it would be necessary to code

the passing of time in each CPL theory so that we could rely on this feature.

Unfortunately, CPL as defined above is not expressive enough to permit the

2.4. Propositional Linear Time Logic 41

representation of infinite flows of time. To overcome this and other limitations,

temporal logics having additional connectives to deal with the time dimension

may be used. Here we choose an entailment system with two temporal connec-

tives only: beg, denoting the beginning of time, and V, the strict strong until

connective which is used to express, when we assert pVq, that the property

p occurs strictly in the future (i.e., after the current moment) and q happens

uninterruptedly from the next instant until but not necessarily including the

moment of the p occurrence8.

Definition 2.4.1 (Propositional Linear Time Logic) The entailment sys-

tem of propositional linear time logic, PLTL for short, is defined as follows:

• SigPLTL ∼= SigCPL;

• LPLTL def
= L

CPL ∪ {beg,V}9;

• EPLTL ∼= idSigPLTL ;

• For each ∆ in obj SigPLTL, GPLTL(∆) is defined by P PLTL as follows:

P PLTL ::= P CPL | beg | (P PLTL)V(P PLTL)

We use the following abbreviations for each {p, q} ⊆ GPLTL(∆) to introduce

the connectives next, the non-strict strong until, eventually in the future,

always in the future and weak until (apart from next, these connectives

all range over the present moment as well):

(D6-X) Xp def
= pV⊥;

(D7-U) pUq def
= q ∨ (p ∧ qVp);

(D8-F) Fp def
= >Up [or p ∨ pV>];

(D9-G) Gp def
= ¬F(¬p) [or p ∧ ¬(¬p)V>];

(D10-W) pWq def
= Gp ∨ pUq [or (p ∧ ¬(¬p)V>) ∨ q ∨ (p ∧ qVp)];

• For each ∆ in obj SigPLTL, the entailment relation `PLTL

∆ is generated by

the proof calculus of CPL together with the following one, provided that

they are both stated over GPLTL(∆), wherein p, q, r and s are included:

(A4-GV) `PLTL

∆ G(p→ q)→ (pVr → qVr);

(A5-GV) `PLTL

∆
G(p→ q)→ (rVp→ rVq);

8pVq ≡ V(p, q) (Gabbay et al. 1994) ≡ qÛp (Manna and Pnueli 1989).
9We have chosen V to distinguish the strict strong until connective proposed by Kamp from

U, the non-strict connective normally found in temporal logics of programs (Pnueli 1977).

42 Chapter 2. Proof Theory and Software Development

(A6-V) `PLTL

∆
pVq → pV(q ∧ pVq);

(A7-V) `PLTL

∆ (p ∧ qVp)Vp→ qVp;

(A8-V) `PLTL

∆
pVq∧rVs→ (p∧r)V(q∧s)∨(p∧s)V(q∧s)∨(q∧r)V(q∧s);

(A9-V) `PLTL

∆ (p ∨ q)Vr→ pVr ∨ qVr;

(A10-G) `PLTL

∆
G(p→ Xp)→ (p→ Gp);

(A11-X) `PLTL

∆
X>;

(A12-Xbeg) `PLTL

∆
¬X(beg);

(R2-G) {p} `PLTL

∆
Gp;

(R3-begG) {beg→ Gp} `PLTL

∆
p.

Note that, by including above the set of axioms of classical propositional logic,

we obtain a proof calculus substantially different from that proposed by Manna

and Pnueli (1989), where all the propositional validities are accepted without

presentation of formal proof. Our axiomatic presentation appears to be more

appropriate given our additional interest in formal stepwise development, where

only formal reasoning can justify software constructions in full.

The proof calculus above is obtained from sets of axioms which also con-

sider a strong strict since connective as discussed in (Gabbay et al. 1994) by

removing this past-time connective and including beg instead. Schemas A4,

A5 and A9 together with R2 guarantee that we have a normal modal logic,

which can be interpreted over relational structures. A6-7 ensure the transitiv-

ity of these relations and we enter in this way the realm of temporal logic. A8

in the presence of the other axioms implies that time is linearly ordered towards

the future. In particular, due to our choice of initialised time flows, this is true

everywhere. We also include A10 to capture temporal induction. We use A11

not only to guarantee that the time flow does not have endpoints but also to

ensure that there is always a next instant, capturing discrete time. Axiom A12

says that no instant precedes the initial one. Rule R2 is the usual temporal

generalisation and R3 may be called begG-elimination.

The reader may want to verify that A1-11 and R1-2 entail all the proposi-

tional theorems of the logical consequence relation defined by Manna and Pnueli

(1983), which is stated in terms of the set of connectives defined as abbreviations

here. This lengthy proof can be developed based on the auxiliary theorems in

Appendix I. We adopt flows of time with fixed characteristics as in their work

to minimise the possibility of generating inconsistent composed specifications.

This would be the case if two composed specifications could assume respectively

discrete and dense flows, with and without endpoints, and so on. It is easy to see

2.4. Propositional Linear Time Logic 43

that, adopting the sufficiently general class of initialised discrete flows without

end points, we can still talk about most interesting properties in terms of the

occurrence of actions. Termination, say, can be satisfactorily represented by the

eventual and everlasting impossibility of action occurrence.

The application of linear time logical systems in software design has been

streamlined by the separation of temporal properties into two distinct families

due to Alpern and Schneider (1985) and the respective development of suitable

reasoning principles by a number of authors. Liveness properties stating what a

system eventually performs offer great challenges to verification methods. They

are treated using the general proof rule derived in Section 2.7. Safety properties,

which define what a system always ensures, are verified here using the following

derived inference rule:

Theorem 2.4.2 (Inference Rule IND-begG) The following inference rule

for any p ∈ GPLTL(∆) is derivable in PLTL:

(IND-begG) {beg → p,G(p→ Xp)} `PLTL

∆ p (anchored temporal induction).

Proof:

1. beg→ p Ass

2. G(p→ Xp) Ass

3. G(p→ Xp)→ (p→ Gp) A10-G

4. p→ Gp R1-MP 2, 3

5. beg→ Gp HS 1, 4

6. p R3-begG 5 (IND-begG)

where HS is the hypothetical syllogism rule stated in Appendix I. It is important

to stress that anchored temporal induction must be captured as a proof rule

since this property cannot be consistently written as an axiom schema in the

presence of the other usual temporal logic schemas. Kröger (1987) recalls that

adopting a similar schema would trivialise the whole logic. Manna and Pnueli

(1989) overcome this problem as above, considering that beg is definable in

terms of past time connectives. In TLA, the Temporal Logic of Actions of

Lamport (1994), an invariance rule is adopted instead since beg has no logical

counterpart and each canonical specification defines an initialisation condition.

Let us return to our supermarket example. We can now increment the

specification of the system using the features of temporal logic. Note that all

the previous specifications can be reused because CPL formulas are allowed in

PLTL. Due to this fact, we present the extended definition of the system in

less detail. In order to define that a state p of the system changes, sometimes

according to the occurrence of specific actions, we use the following definition:

Mod(p) def
= (p ∧X(¬p)) ∨ (¬p ∧Xp)

44 Chapter 2. Proof Theory and Software Development

Specification LockerPLTL
attributes trolley in

actions release, lock
axioms
beg→ troley in (6.1)
release→ X(¬trolley in) (6.2)
lock→ X(trolley in) (6.3)
release ∨ lock ∨ ¬Mod(trolley in) (6.4)

End

Specification SafeLPTL
attributes card in

actions deposit, collect
axioms
beg→ ¬card in (7.1)
deposit→ X(card in) (7.2)
collect → X(¬card in) (7.3)
deposit ∨ collect ∨ ¬Mod(card in) (7.4)

End

Figure 2.8: Specification of the supermarket system in PLTL.

@
@

@@I

�
�
���

�
�
���

@
@

@@I
LockerCP+LTL

LockerCPLLockerPLTL

Locker

τ
#
1.1 τ

#
1.2

σ
#
1.1 σ

#
1.2

@
@

@@I

�
�
���

- �

Device

SystemPLTL

τ
#
1 τ

#
2

σ
#
1 σ

#
2

@
@

@@I

�
�
���

�
�
���

@
@

@@I
SafeCP+LTL

SafePLTLSafeCPL

Safe

τ
#
2.1 τ

#
2.2

σ
#
2.1 σ

#
2.2

Figure 2.9: Configuration of the supermarket system in PLTL.

This abbreviation is employed in the axioms of Figure 2.8. We also assume

the existence of specifications Safe and Locker containing only the signature

symbols presented in Section 2.3. These are used to define the extended configu-

ration of the system, which appears in Figure 2.9. We only mention in that figure

the relevant specifications because the other ones are defined up to isomorphism

by the pushout construction which results in SystemPLTL. In addition, we

postulate that the morphisms remaining to be defined are all identities.

The connectives of temporal logic allow us to make reference to the passing

of time in each specification. Using beg in axiom (6.1), we define that a trolley is

initially attached to the locker. Conversely, the safe is originally empty according

to (7.1). The effect of actions over the attributes of each entity are defined based

on X, the next time connective. Axiom (6.2) specifies that a trolley will not be

kept locked to the system in the next instant if it is released in the current

moment. Once locked again to the system, (6.3) ensures that the trolley will

2.4. Propositional Linear Time Logic 45

be subsequently available. Although this kind of axiom treats action effects

with precision, they do not ensure that the respective attributes will remain

invariant otherwise. This is normally called the frame problem in the literature,

which becomes overly complicated in the presence of concurrency. Because in

our example each object does not present internal concurrency, their actions

being mutually exclusive, we may adopt a simple solution. Ryan et al. (1991)

propose an axiom requiring that either the actions of each object happen or

else the attribute values do not change. This is what (7.4) says: that a card is

either deposited or collected at each moment or else the state of the safe is not

modified. In Chapter 3, we will capture this notion of locality logically.

We have verified that the supermarket system will not allow any customer

action unless some object is held by the system, be it a trolley or a card. It is

also possible to prove using CPL that this property can be made stronger in

that precisely one object must be held if any action is to take place. Using our

temporal proof calculus and the extended specification of the system, we can

now prove that this state condition is never violated. That is, it is always the

case that either a trolley or a card is connected to the system:

`SystemPLTL G(trolley in↔ ¬card in) (2.4.1)

Simple temporal reasoning based on the theorems in Appendix I shows that this

property can be decomposed within SystemPLTL:
1. G(trolley in→ ¬card in) ∧G(card in→ ¬trolley in) Ass

2. (G(trolley in→ ¬card in) ∧G(card in→ ¬trolley in))↔ DIST-ANDG

G((trolley in→ ¬card in) ∧ (card in→ ¬trolley in))
3. (G(trolley in→ ¬card in) ∧G(card in→ ¬trolley in))→ IFF-E 2

G((trolley in→ ¬card in) ∧ (card in→ ¬trolley in))
4. G((trolley in→ ¬card in) ∧ (card in→ ¬trolley in)) R1-MP 1, 3

5. G(trolley in↔ ¬card in) D5-IFF 4

Because the two conjuncts in (1) are similar, we will only develop the proof of

one of these properties. The other proof can be developed similarly.

At this point we have a good opportunity to apply our derived inference

rule IND-begG for anchored temporal induction. This inference rule allows

us to decompose the proof of the assumption above into the verification of an

initial condition and an invariance formula of SystemPLTL:

6. beg→ (trolley in→ ¬card in) Ass

7. (trolley in→ ¬card in)→ X(trolley in→ ¬card in) Ass

8. G((trolley in→ ¬card in)→ X(trolley in→ ¬card in)) R2-G 7

9. trolley in→ ¬card in IND-begG 6, 8

10. G(trolley in→ ¬card in) R2-G 9

46 Chapter 2. Proof Theory and Software Development

The initial condition (6) is proved using classical reasoning:

11. beg→ trolley in (6.1)

12. beg→ ¬card in (7.1)

13. beg→ trolley in ∧ ¬card in AND-R ρ1(11), ρ2(12)

14. ¬card in→ (trolley in→ ¬card in) A1-I

15. (trolley in ∧ ¬card in)→ (trolley in→ ¬card in) AND-L 14

16. beg→ (trolley in→ ¬card in) HS 13, 15

where ρi
def
= (σi ◦σi.i)

#, the composition of two morphisms determined up to iso-

morphism by the pushout construction in Figure 2.9. The proof of the invariance

formula (7) requires additional temporal reasoning:

17. use→ X(trolley in→ ¬card in) Ass

18. return→ X(trolley in→ ¬card in) Ass

19. ¬Mod(trolley in) ∧ ¬Mod(card in)→ X(trolley in→ ¬card in) Ass

20. use ∨ return ∨ (¬Mod(trolley in) ∧ ¬Mod(card in))→ OR-L 17, 18, 19

X(trolley in→ ¬card in)
21. release ∨ lock ∨ ¬Mod(trolley in) (6.4)

22. deposit ∨ collect ∨ ¬Mod(card in) (7.4)

23. (use ∨ return ∨ ¬Mod(trolley in))∧ AND-I ρ1(21), ρ2(22)

(use ∨ return ∨ ¬Mod(card in))
24. use ∨ return ∨ (¬Mod(trolley in) ∧ ¬Mod(card in)) DM, IFF-E, R1-MP 23

25. X(trolley in→ ¬card in) R1-MP 24, 20

26. X(trolley in→ ¬card in)→ A1-I

((trolley in→ ¬card in)→ X(trolley in→ ¬card in))
27. (trolley in→ ¬card in)→ X(trolley in→ ¬card in) R1-MP 25, 26

In order to complete the verification of property (2.4.1), we prove assump-

tion (17) above as follows:

28. use→ X(card in) (7.2)

29. use→ X(¬trolley in) (6.1)

30. use→ X(card in) ∧X(¬trolley in) AND-R ρ2(28), ρ1(29)

31. X(card in) ∧X(¬trolley in)→ X(card in ∧ ¬trolley in) DIST-ANDX, IFF-E

32. use→ X(card in ∧ ¬trolley in) HS 30, 31

33. (card in→ ¬trolley in)→ (¬¬trolley in→ ¬card in) CONP

34. trolley in→ ¬¬trolley in DOUB, A3-N, R1-MP

35. (trolley in→ ¬¬trolley in)→ LTRAN

((¬¬trolley in→ ¬card in)→ (trolley in→ ¬card in))
36. (¬¬trolley in→ ¬card in)→ (trolley in→ ¬card in) R1-MP 34, 35

37. (card in→ ¬trolley in)→ (trolley in→ ¬card in) HS 33, 36

38. (card in ∧ ¬trolley in)→ (card in→ ¬trolley in) A1-I, AND-L

39. G((card in ∧ ¬trolley in)→ (trolley in→ ¬card in)) HS 38, 37, R2-G

40. X(card in ∧ ¬trolley in)→ X(trolley in→ ¬card in) MON-GX, R1-MP 39

41. use→ X(trolley in→ ¬card in) HS 32, 40

2.5. Propositional Branching Time Logic 47

The proof of (18) is developed in the same way, without steps similar to (32-37)

because we obtain in this case the required implication in the right direction.

Assumption (19) is proved by simple although tedious temporal reasoning, which

is omitted here. This concludes the verification of (2.4.1).

An analogy between the properties of concurrent systems and (2.4.1) ap-

pears to be in order here. The components of a real system are said to be in a

deadlock state if and only if it is impossible for each of them to perform compu-

tations because the other components have not provided some locally required

functionality. Since all the components remain waiting for one another, the

whole system stops. A typical example is a circular traffic jam in which no car

is allowed to proceed because vehicles in perpendicular streets block the passage.

The negation of (2.4.1) is another example wherein either the empty safe will

always expect a forbidden action from the empty locker and vice versa, or else

both occupied equipment wait forever for their impossible utilisation. Safety

properties like deadlock freedom assert that something bad never happens. We

have just applied a method which allows us to verify such properties when the

given specifications are informative enough.

2.5 Propositional Branching Time Logic

Even though propositional linear time logics as studied in the previous section

are appropriate for describing the behaviour of some concurrent systems, these

logics have limitations too. Sistla et al. (1984) and Koymans (1987) proved

many inexpressibility results stating that it is impossible to describe unbounded

message buffers using such logics. As a practical result, we can infer that the

specification and verification of most kinds of concurrent asynchronous message

passing systems would require a first-order temporal logic or similar. We shall

revisit this issue in the sequel.

There is, however, an alternative direction towards increasing the expres-

sive power of propositional linear time logics that appears to be worthwhile

studying at this point. This study is motivated by practical reasons related to

message passing systems as well. In this domain, it is frequent to demand forms

of guaranteed delivery wherein each dispatched message must be received when-

ever it becomes possible often enough for the recipient to accept it, a particular

kind of liveness property usually called fairness (Gabbay et al. 1980). Such re-

quirements rule out allegedly unreasonable or unfair behaviours in which some

messages are always ignored even though the recipient could accept them. Al-

48 Chapter 2. Proof Theory and Software Development

though we know how to specify that something will happen in the future using

the connective F, we do not know how to express possibility using a pure linear

time logic — that there are some behaviours in which an event indeed occurs

despite the fact that we cannot ensure it is the current behaviour. Assuming

branching flows of time makes the solution of this problem conceivable.

Two plausible and completely distinct views concerning the definition of

branching time logics are available in the literature (Zanardo 1996). The so-

called Priorean view advocates that a sentence asserting the eventual occurrence

of a proposition is true at a given moment x if and only if the proposition is true

at some moment in some future of x. Conversely, the Ockhamist view argues

that it is meaningless to discuss the truth value of a proposition unless additional

information is provided about the actual future. To clarify this distinction, a

metaphor can be defined. Assume that a system and two omniscient observers

are given, Eager and Lazy. Both see the system evolving almost as defined in

the previous section in that each behaviour has an initial instant, is discrete and

infinite. Eager, who adopts a Priorean view, politely ignores everything else he

knows and follows the system closely, allowing his own current moment of time

to be always equal to that of the system. According to his perceptions, what

will happen in the future spans as many branches of undetermined possibilities.

Lazy, on the contrary, adopts an Ockhamist view and prefers to prevent his

time from passing, staying outside of any existing behaviour in the underlying

time frame. He can only see the distinct behaviours of the system as a set of

linear terminated sequences. For him, what could have otherwise been the case

at some moment of a behaviour is defined in terms of other possible behaviours

of the system. Comparing these two distinct views, we can conclude that what

is regarded as a branching time logic depends on the chosen kind of observer.

Both are reasonable views that allow us to talk about possibility.

Axiomatisations of Priorean and Ockhamist logics have different virtues.

Priorean logics have been preferred in the study of linguistic structures. Some

of these logics, which are normally defined by a reduced set of axiom schemas

and rules, are studied in (Gabbay et al. 1994). Ockhamist logics have been

prevalent in the design of software systems as shown by the extensive literature

(Emerson 1990, Stirling 1992, Zanardo and Carmo 1993). This may be due to

the fact that all the axiom schemas defining linear time are still valid concerning

each behaviour. Priorean logics, on the other hand, do not obey schemas like

A8-V requiring linearity. Ockhamist branching time demands in this way an

additional connective E to express possibility, the existence of a potentially

distinct behaviour obeying a given property with a strict past history identical

2.5. Propositional Branching Time Logic 49

to that of the current behaviour. As a result, a larger set of axiom schemas is

required. Here we adopt A, the dual to E, as a logical connective of necessity

and choose to define our branching time logic as follows:

Definition 2.5.1 (Propositional Branching Time Logic) The entailment

system of propositional branching time logic, PBTL for short, is defined as

follows:

• SigPBTL ∼= SigPLTL;

• LPBTL def
= L

PLTL ∪ {A};

• EPBTL ∼= idSigPBTL ;

• For each ∆ in obj SigPPBTL, GPBTL(∆) is defined by P PBTL as follows:

P PBTL ::= P PLTL | A(P PBTL)

We also use the following abbreviation for each p ∈ GPBTL(∆):

(D11-E) Ep def
= ¬A(¬p).

• For each ∆ in obj SigPBTL, the entailment relation `PBTL

∆ is generated by

the proof calculus of PLTL together with the following one, provided that

they are both stated over GPBTL(∆), wherein p and q are included:

(A13-A) `PBTL

∆ A(p→ q)→ (Ap→ Aq);

(A14-A) `PBTL

∆
Ap→ p;

(A15-EA) `PBTL

∆
Ep→ AEp;

(A16-EV) `PBTL

∆
(Ep)Vq → E(pVq);

(A17-AXU) `PBTL

∆
A(p→ X(qUp))→ (p→ XA(qUp));

(A18-Ebeg) `PBTL

∆ E(beg)→ beg;

(R4-A) {p} `PBTL

∆
Ap.

This defines a full branching time modality, in the sense that there is no re-

striction on using A in the scope of any other connective. Interesting logics

with a nesting restriction do exist such as the Computation Tree Logic (CTL)

of Emerson (1990). Also note that Lamport (1994), although considering an

axiomatisation of linear time only, include in his logic an enabledness connective

En analogous to our E without providing corresponding logical axiom schemas

or inference rules to support its derivation.

50 Chapter 2. Proof Theory and Software Development

Axiom schemas A13-15 and rule R4-A for modal generalisation make of

A an S5 modality, which is determined here as usual by an equivalence relation

on the worlds that occur at the same level in the set of legal behaviours. This

reduced set of schemas and rules is distinct from (although equivalent to) the

usual S5 axiomatisation, which is defined using another set of schemas (Gold-

blatt 1992; Exercise 2.8). Axiom A18 says that the possibility of the current

moment being initial forces it to be the case, meaning that all behaviours are

at first synchronised, i.e., the level of their initial worlds is the same. A16 con-

siders in addition that a behaviour possesses an alternative in a future moment

only if its subsequent history up to but not including that point could also be

realised by the alternative behaviour. Schema A17 extends this requirement in

a pointwise manner by including the current moment in each future history.

Taking into account the preceding set of axiom schemas, we see that what

makes our branching time logic really different from other formalisms is the

interpretation assigned to E. Here we read a formula Ep as p occurring in

some possible behaviour with an identical past history not necessarily including

the current moment (or world). This means that E has a strict interpretation

here. This interpretation easily yields invalid an axiom schema for non-strictness

proposed by Stirling (1992): Ep → p for any atomic p. As an advantage we

obtain that the substitution property still holds, which means that it is possible

to substitute formulas by logically equivalent ones in any sentence. This is,

however, a temporary achievement since we loose this property when considering

a first-order extension of this branching time logic. Our interpretation also

entails for the same reason that the logic above is substantially different from

CTL∗ (Emerson 1990), where the same connective refers to behaviours with an

identical past history necessarily including the current world. For atomic p,

Ep ∧ ¬p→ Xp (2.5.1)

has a contradictory antecedent in CTL∗ whereas this need not be the case here.

We do not know how to express in CTL∗ this property that p happens at most

each other moment in any behaviour. On the other hand, considering a definition

of that logic in terms of our syntax10, the theories of CTL∗ are interpreted into

PBTL by a functor B : ThCTL∗

→ ThPBTL mapping signatures as the identity

and each p ∈ Th∆(Ψ), ∆ in obj SigCTL∗

and Ψ ⊆ G(∆), into beg → B∗(p)

belonging to B(Th∆(Ψ)), where B∗ is defined as follows:

10Note that beg does not have a syntactic counterpart in CTL∗.

2.5. Propositional Branching Time Logic 51

h
h

h

h

h

x
x

h

h

h

h

x
x

haaaaa

!!
!!!

aaaaa

#
#
#
##

aaaaa

!!
!!!

aaaaa

#
#
#
##

......

.........

.....

......

......

.........

.....

......

p

p p

p

EGp EGp

(a)

*

*

(b)

Figure 2.10: Interpretation of branching modality in (a) PBTL and (b) CTL∗.

B∗(p) def
= p, for p ∈ ECTL∗

(∆)
B∗(¬p) def

= ¬B
∗(p)

B∗(p→ q) def
= B

∗(p)→ B∗(q)
B∗(pVq) def

= (B∗(p))V(B∗(q))
B∗(Ap) def

= p, for p ∈ ECTL∗
(∆)

B∗(A(pVq)) def
= XA((B∗(q))U(B∗(p)))

B∗(Ap) def
= A(B∗(p)), for any other p

and each theory morphism ψ : Th∆1(Ψ1) → Th∆2(Ψ2) in morph ThCTL∗

into

B(ψ) : {B(p)|p ∈ Th∆1(Ψ1)} → {B(p′)|p′ ∈ Th∆2(Ψ2)}. Zanardo (1996) also

studies many similar temporal logics.

Branching time logics are regarded as particular many dimensional for-

malisms by Gabbay et al. (1994). Essentially, new dimensions require addi-

tional arguments in interpreting each formula. We use trees as a conceptual

abstraction of parallel behaviours in Figure 2.10 to clarify this interpretation.

We indicate therein points of reference for interpretation using (∗) and sets of

possible evaluation points of a formula are circumscribed by dashed boxes. In

CTL∗, evaluation and reference points coincide as shown in Figure 2.10 (b).

This is not, however, the requirement in our case. Hence, any behaviour passing

through (∗) in Figure 2.10 (a) makes a formula EGp true because there is some

future history following that past moment satisfying Gp.

It is customary to impose additional restrictions on the flows of time in

bidimensional logics as a means of capturing the behaviour of computer programs

in a more realistic manner (Emerson 1983). Such restrictions are:

Prefix closure: Prefixing transitions to a behaviour results in a valid behaviour;

Suffix closure: Every suffix of a behaviour is itself a valid behaviour;

52 Chapter 2. Proof Theory and Software Development

h

h

h

h
hh
h

x

aaaaa

!!
!!!

......

.........
aaaaa aaaaa

#
#
#
.....

......

EFEp

p

Ep

FEp

*

Figure 2.11: FEFEp→ FEp is not valid in PBTL.

Fusion closure: Joining the past and the future of distinct behaviours at a

shared moment always results in another valid behaviour;

Limit closure: If a behaviour can be followed for an arbitrarily long but finite

length of time, it can be followed for an infinite length of time.

Suffix closure is invalid here since we adopt initialised behaviours and the pro-

cess of taking out their initial segments does not guarantee that the remaining

histories have acceptable initial moments, as identified by Manna and Pnueli

(1989). Prefix closure is also invalid since finite behaviours are not admissible.

Fusion closure is not supported as well because we can write, based on the initial

moment, sentences that can distinguish two future histories sharing some mo-

ment, although Stirling (1992) mentions that this property may be captured by

AXp→ XAp and this schema is derivable from A16. Finally, we do not assume

limit closure because doing so would prevent us from treating important notions

of fairness. In fact, Emerson (1983) recognises that these assumptions do not

always make sense, specially in representing real life objects or computational

processes which have a definite notion of state. All the axiom schemas above

are solely derived from the interpretation given to our branching modality.

Once again, the supermarket example can be used to illustrate the appli-

cation of our logical system. Taking as a starting point the specifications of last

section, let us assume that each component can provide some visual information

on its current state. The locker, for instance, is able to signal that the trolley

has been removed. The additional action symbols representing the display of

visual information are introduced in Figure 2.12. Suppose, moreover, that, due

to physical limitations, it is still impossible for each of these objects to allow the

occurrence of more than one action at each time. We capture this constraint

2.5. Propositional Branching Time Logic 53

Specification LockerPBTL
attributes trolley in

actions release, lock, show out
axioms
release ∨ lock→ ¬show out (8.1)
show out→ ¬trolley in (8.2)
¬trolley in→ E(show out) (8.3)
¬lock ∧E(show out)→ Just(show out) (8.4)

End

Specification SafePBTL
attributes card in

actions deposit, collect, show in
axioms
deposit ∨ collect → ¬show in (9.1)
show in→ card in (9.2)
card in→ E(show in) (9.3)
¬collect ∧E(show in)→ Just(show in) (9.4)

End

Figure 2.12: Specification of the supermarket system in PBTL.

through axioms (8.1) and (9.1). This means that a safe connected to the system

as shown in Figure 2.13 is prevented from allowing show out to happen whenever

lock or release occur, which are in turn mutually exclusive actions because of

(2.1). Since we do not want to preclude customers from performing any action,

we cannot require that state information be displayed due to this disjointedness

constraint. Instead, we adopt axioms (8.3) and (9.3) stating that information

may be presented whenever each object is in use. These are so-called willingness

properties (Barreiro et al. 1995), which say that each object is willing to perform

an action although its occurrence is not guaranteed.

Willingness properties alone are too weak to force the occurrence of any

action. In our example, although endowed with enough structure to display their

busy state, there may be behaviours in which both safe and locker are being used,

but never present such information. Then, the additional structure we have just

defined would be useless. To increase the effectiveness of the system, we can

enforce some weak fairness conditions, defined using the following abbreviation:

Just(p) def
= F(p ∨A(¬p))

Axiom (8.4) specifies that whenever it is possible for the locker to display some

information and the trolley is not being returned, its state will be presented in

54 Chapter 2. Proof Theory and Software Development

@
@

@@I

�
�
���

�
�
���

@
@

@@I
LockerCP+L+BTL

LockerCP+LTLLockerPBTL

Locker

τ
#
1.1.1

(σ1.2 ◦ τ1.2)
#

σ
#
1.1.1 σ

#
1.1.2

@
@

@@I

�
�
���

- �

Device

SystemPBTL

(σ1.2 ◦ τ1)
(σ2.1 ◦ τ2)

#

σ
#
1 σ

#
2

@
@

@@I

�
�
���

�
�
���

@
@

@@I
SafeCP+L+BTL

SafePBTLSafeCP+LTL

Safe

(σ2.1 ◦ τ2.1)
#

τ
#
2.2.2

σ
#
2.2.1 σ

#
2.2.2

Figure 2.13: Configuration of the supermarket system in PBTL.

the future (which possibly includes the current instant) or else this will become

momentarily impossible for the locker. Because of (8.3), we can infer that in this

last situation the trolley would have to be back again. On the other hand, for

the trolley remaining in use indefinitely, the locker would eventually be obliged

to present some information. Summarising these informal observations, we can

now ensure that the display would work eventually whenever allowed to do so

by the actions of supermarket customers (or possibly thieves).

Fairness axioms allow us to define in a modularised way how each object

constrains the environment. A supermarket could not prevent information from

being displayed, perhaps imposing additional conditions over the occurrence of

show in, while employing the locker and safe above. This would contradict our

fairness axioms. We may, on the other hand, try to describe a perfect system,

which would display state information whenever it had the opportunity. The

following formula concerning the safe would be valid in this case:

¬collect ∧E(show in)→ show in (2.5.2)

Unfortunately, although a specification with formula (2.5.2) substituting (9.4)

would not be inconsistent, the sequential perfect safe specified as a result would

not have a display realisable as computer program: the decision as to whether

or not to present some information would have to consume no time.

2.6 Classical First-Order Logic

Unless augmented with additional logical connectives to capture the peculiar

characteristics of specific domains, an example being the temporal connectives

defined in the previous sections to deal with time, propositional logics are unable

2.6. Classical First-Order Logic 55

to express in full generality the properties of individual objects in the context of

their collections. For instance, in our previous example considering the super-

market system, it would be impossible to require from each customer to return

the same released trolley because there were no logical means to say that any

other trolley would not be acceptable. Much the same occurs with deposited

identification cards. Another more problematic example related to computing

is obtained by considering concurrent message passing systems, which cannot

be faithfully specified within the realm of propositional logics because each ex-

changed message needs to be tagged in an unique way to ensure it will not be

replicated. If we assume that time does not have end points and see that many

messages may be dispatched at each instant, it is easy to conclude that the set

of tags needs to be infinite. But we cannot talk about the infinitary character

of some domain with finite proposition symbols and finitary connectives only.

Indeed, the weakness of propositional logical systems appears to lie in the

absence of linguistic means to pick a denotation of an object in each domain of

discourse and relate it to the denotation of any other object therein. This justi-

fies a shift to first-order formalisms, which, through the use of logical variables

and quantifiers, allow us to deal with these issues. Ignoring for a while the time

dimension, we define below what we understand by classical first-order logic.

Once again, we face the definition of a well-established logic, already studied by

a number of authors such as van Dalen (1994). We take advantage of this fact

to introduce in what follows most of the notation to be used in the remainder

of the thesis.

Definition 2.6.1 (First-Order Logic) The entailment system of classical first-

order logic, FOL for short, is defined as follows:

• SigFOL ∼= FinSet× FinSet such that there exist:

1. Pred, Funct : SigFOL → FinSet, forgetful functors assigning signa-

tures to disjoint sets of predicate and function symbols, respectively;

2. Type, a map assigning each ∆ in obj SigFOL to a similarity type

(arityPred
∆ , arityFunct

∆), each arity itself a function with dom arityPred
∆

def
= Pred(∆), dom arityFunct

∆
def
= Funct(∆) and cod arityPred

∆
def
=

cod arityFunct
∆

def
= N. We usually drop the indexes from each arity;

• LFOL def
= L

CPL ∪ {∀, ·} ∪ VFOL (a set of variables), such that |VFOL| def
= ℵ0;

• For each ∆ in obj SigFOL, EFOL(∆) def
= Pred(∆) ∪ Funct(∆);

56 Chapter 2. Proof Theory and Software Development

• For each ∆ in obj SigFOL, Term(∆), Atom(∆) and GFOL(∆) are respec-

tively sets of terms, atomic formulas and formulas defined by T FOL, AFOL

and F FOL as follows, provided that x ∈ VFOL, f ∈ Funct(∆) with arity(f) =

m and a ∈ Pred(∆) with arity(a) = n:

T FOL ::= x | f(T FOL

1 , . . . , T FOL

m)

AFOL ::= a(T FOL

1 , . . . , T FOL

n)

F FOL ::= AFOL | ¬F FOL | F FOL → F FOL | (F FOL) | ∀x · F FOL

We also define a functor Expr : SigFOL → Set associating ∆ in obj SigFOL

to a set of expressions Expr(∆) def
= G

FOL(∆) ∪ Term(∆) ∪ EFOL(∆).

FOL is equipped with a map Free which assigns each ∆ in obj Sig to

a free variable function Free∆ : Expr(∆) → P (VFOL). For x ∈ VFOL,

ti ∈ Term(∆) and {p, pi} ⊂ Expr(∆), Free(p) is defined as follows:

Free(x) def
= {x}

Free(f(t1, . . . , tn)) def
=

⋃

{Free(ti)|1 ≤ i ≤ n} ,
for f ∈ Funct(∆) and arity(f) = n

Free(a(t1, . . . , tn)) def
=

⋃

{Free(ti)|1 ≤ i ≤ n} ,
for a ∈ Pred(∆) and arity(a) = n

Free(¬p) def
= Free(p)

Free(p1 → p2) def
= Free(p1) ∪ Free(p2)

Free(∀x · p) def
= Free(p)− {x}

Free(p) def
= { },

for any other p ∈ Expr(∆)

To stress that {x, y} ⊆ Free(p) must be the case, we write p[x, y].

FOL is also equipped with a map [·] associating each ∆ in obj SigFOL to

a substitution function [·]∆ : GFOL(∆)×VFOL×Term(∆)→ GFOL(∆). For

any {ti, r} ⊆ Term(∆), q ∈ VFOL and p ∈ GFOL(∆), p[q\r] denoting the

substitution of q by r in p is defined as follows:

q[q\r] def
= q

f(t1, . . . , tn)[q\r] def
= f(t1[q\r], . . . , tn[q\r]),

for f ∈ Funct(∆) and arity(f) = n

a(t1, . . . , tn)[q\r] def
= a(t1[q\r], . . . , tn[q\r]),

for a ∈ Pred(∆) and arity(a) = n

(¬p1)[q\r] def
= ¬p1[q\r]

(p1 → p2)[q\r] def
= p1[q\r]→ p2[q\r]

(∀x · p1)[q\r] def
= ∀x · (p1[q\r]),

for x ∈ VFOL − Free(r)
p[q\r] def

= p,

for any other p, q and r.

2.6. Classical First-Order Logic 57

where p is the underlined expression in each case above.

We say that r is free for q in p if and only if each occurrence of q in p

does not appear in the scope of a quantifier which binds some of the free

variables of q in common with r. We only consider a substitution p[q\r]

to be admissible if r is free for q in p. We also assume the existence of a

substitution relation {·} associated to [·] which performs just some of the

specified substitutions.

The following abbreviation is used for each p ∈ GFOL(∆) and x ∈ VFOL:

(D12-∃) ∃x · p def
= ¬∀x · ¬p.

• For each ∆ in obj SigFOL, the entailment relation `FOL

∆ is generated by the

proof calculus of CPL together with the following one, provided that they

are both stated over GFOL(∆), wherein p and q are included, that x ∈ VFOL

with x 6∈ Free(p) and that t ∈ Term(∆) is free for x in p:

(A19-∀) `FOL

∆
(∀x · p[x])→ p[x\t];

(A20-∀) `FOL

∆
∀x · (p→ q)→ (p→ ∀x · q);

(R5-∀) {p→ q} `FOL

∆
p→ ∀x · q.

The definition of first-order logic is more elaborated than the propositional case.

The category of signatures is endowed with linguistic structure to represent

generic properties of elements using predicate symbols and functional relation-

ships between them through function symbols. These elements are denoted by

arguments in applying such symbols as well as the result in the case of functions.

This is why first-order logic symbols are assigned to an arity, to define the num-

ber of elements involved in these situations. The logical language also contains

a countably infinite set of variables and a quantifier symbol which allow us to

express properties in generic form. These notions are standard.

What is unusual in our definition above is the use of a relation instead

of a function to deal with substitution. We shall see in what follows that this

additional generality is required in stating the properties of logical equality. A

similar notion of parallel substitution is proposed by van Dalen (1994), who

considers only substitutions of terms for variables within formulas but allows

many of them to be effected in parallel producing non-deterministic results,

which do not necessarily denote a single formula.

FOL is a faithful extension of CPL. Indeed, all the additional axiom

schemas and rule above have only to do with the newly introduced quantifier.

A19 says that properties of particular elements follow from the general case

58 Chapter 2. Proof Theory and Software Development

covering all the elements of the domain. Moreover, A20 says that if a generic

property guarantees for each element of the domain another property, so does

it guarantee that the whole domain enjoys the same. R5 is the universal gen-

eralisation rule. To see that this is a faithful extension of CPL, first note that

there is a functor F : SigCPL → SigFOL such that, for each ∆ in obj SigCPL,

Funct(F(∆)) is empty and each p ∈ ECPL(∆) is isomorphically mapped into

F(p) ∈ Pred(F(∆)) with arity(F(p)) = 0, and that also maps propositional

morphisms accordingly. Compositional application to the symbols in each ex-

pression lifts F to another functor between the respective categories of theories.

Each theory Th∆(Ψ) in obj ThCPL is interpreted into first-order logic because

none of the theorems in Th∆(Ψ) is lost in the translation. This interpretation

is also faithful because, when we restrict the language of a first-order theory to

the co-domain of F , it is necessarily the image of a theory in CPL. Note that

CPL is faithfully embedded into PLTL, which in turn is similarly embedded

into PBTL, but in those cases the embedding functors are trivial.

Applying the preceding functor to the theories specified in Section 2.3, we

obtain a set of examples of first-order theories. In examples requiring the full

expressiveness of the logic, we assume that free variables in axioms are implicitly

universally quantified. In practice, however, FOL does not seem to be adequate

to support the design of extensible systems. We need equality to deal with

identity and the temporal connectives to recover direct access to time without

resorting to any form of coding. Because of these reasons, we shall postpone the

presentation of additional examples to Chapter 3.

2.6.1 Many-Sorted Logic with Equality

The examples we have provided point to the fact that the real world can be

organised in collections of similar objects. Identification card numbers, message

tags and others are instances of this idea. To be effective, this classification of

the universe in domains requires additional support for defining similarity and

sameness. These can be treated within a logic where the notions of sort and

equality are made a logical part of the formalism, as defined below:

Definition 2.6.2 (Many Sorted First-Order Logic) The entailment system

of many sorted first-order logic with equality, MSFOL, is defined as follows:

• SigMSFOL ∼= SigFOL × FinSet such that there exist:

1. Pred and Funct as defined in FOL, and Sort : SigMSFOL → FinSet

assigning each signature to a set of sort symbols disjoint from those

of predicates and functions;

2.6. Classical First-Order Logic 59

2. Type, a map assigning each ∆ in obj SigMSFOL to a type signature

(typePred
∆ , typeFunct

∆), each type itself a function with dom typePred
∆

def
= Pred(∆), dom typeFunct

∆
def
= Funct(∆) and cod typePred

∆
def
=

Sort(∆)∗fin, cod typeFunct
∆

def
= Sort(∆)∗fin → Sort(∆). We usually

drop the indexes from each type and put arity(p) def
= len (dom type(p));

• LMSFOL ∼= LFOL ∪ {=} such that there is a functor Class : SigMSFOL →

Set
◦
→ assigning each ∆ in obj SigMSFOL to a partial classification func-

tion Class(∆) : VMSFOL → Sort(∆). For s ∈ Sort(∆), VMSFOL

∆s
def
=

{x ∈ VMSFOL|Class(∆)(x) = s}, the set of s-classified variables;

• For each ∆ in obj SigMSFOL, EMSFOL(∆) def
= Pred(∆) ∪ Funct(∆);

• For each ∆ in obj SigMSFOL and s ∈ Sort(∆), we write as Term(∆)s the

set of s-classified terms defined as follows:

{t ∈ Term(∆)|t ∈ VMSFOL

∆s
∨ cod type(t) = s}

Moreover, Atom(∆) is redefined as follows:

AMSFOL ::= AFOL | T FOL

s = T FOL

s

The following conditions are respectively added to the definition of Free

and [·] for FOL, providing {t1, t2} ⊂ Term(∆)s for some s ∈ Sort(∆):

Free(t1 = t2) def
= Free(t1) ∪ Free(t2)

(t1 = t2)[q\r] def
= t1[q\r] = t2[q\r]

We also use the following abbreviations:

(D13-NEQ) t1 6= t2 def
= ¬(t1 = t2);

(D14-UNI) ∃! x · p[x] def
= ∃x · (p[x] ∧ ∀y · p[y]→ x = y).

• For each ∆ in obj SigMSFOL, the entailment relation `MSFOL

∆ is generated

by the proof calculus of FOL together with the following one, provided

that they are both stated over GMSFOL(∆), that {t, t1, t2} ⊂ Term(∆)s for

some s ∈ Sort(∆), that p ∈ Atom(∆) and that q ∈ Expr(∆):

(A21-EQ) `MSFOL

∆
t = t;

(A22-EQ) `MSFOL

∆ t1 = t2 → (p{q\t1} → p{q\t2}).

60 Chapter 2. Proof Theory and Software Development

That is, the similarity type of first-order signatures is extended with typing

information based on sets of extra-logical sort symbols. Terms and variables

are classified accordingly. Equality is included as a logical symbol, for which

the axiomatisation above is standard. The only exception is perhaps the use of

the substitution relation in A22 to allow the proof of theorems like x = y →

(a(x, y)→ a(y, x)), a ∈ Pred(∆), {x, y} ⊂ VMSFOL, which are not provable con-

sidering an axiomatisation based on the usual substitution function. Sernadas

et al. (1995) adopts the same notion. Together with A21, which asserts that

equality is reflexive, the other characteristic properties of equivalence relations,

symmetry and transitivity, are provable as stated in Appendix I.

It is easy to see that FOL can be faithfully embedded into MSFOL. More

interestingly, we can also obtain a similar embedding in the opposite direction.

Define a functor M : SigMSFOL → SigFOL such that, for each signature ∆ in

obj SigMSFOL, each symbol p ∈ EMSFOL(∆) ∪ VMSFOL ∪ {=} is isomorphically

mapped into an image in EFOL(M(∆)) with the same arity. So:

• x ∈ VMSFOL ⇒M(x) ∈ VFOL;

• f ∈ Funct(∆)⇒M(f) ∈ Funct(M(∆)) ∧ arity(M(f)) = arity(f);

• a ∈ Pred(∆)⇒M(a) ∈ Pred(M(∆)) ∧ arity(M(a)) = arity(a);

• s ∈ Sort(∆)⇒M(s) ∈ Pred(M(∆)) ∧ arity(M(s)) = 1;

• M(=) ∈ Pred(M(∆)) ∧ arity(M(=)) = 2.

M lifts to a functor between the respective categories of theories by compo-

sitional application to MSFOL expressions obeying what follows, provided

{p, q} ⊆ GMSFOL(∆), {t1, t2} ⊂ Term(∆)s for s ∈ Sort(∆) and x ∈ VMSFOL:

M(t1 = t2) def
= M(=)(M(t1),M(t2))

M(¬p) def
= ¬M(p)

M(p→ q) def
= M(p)→M(q)

M(∀x · p) def
= ∀M(x) ·M(Class(∆)(x))(M(x))→M(p)

To see that this is also a faithful embedding, suppose that the restriction of a

first-order theory to the language of the codomain of M contains a sentence

which is not in the image of any MSFOL theory. This is a contradiction since

we know that any such FOL theory can be faithfully embedded into MSFOL.

The existence of both faithful embeddings means that these logics are equally

expressive. So, what is the reason for introducing many-sorted logic with equal-

ity?

2.6. Classical First-Order Logic 61

Sorts are a widely recognised way of making sentences more readable (van

Dalen 1994). The justification of logical equality is more subtle and has to do

with A22 and alternative schemas. Assume our interest in specifying a prob-

lem involving an identity relation and at least one binary predicate symbol. To

represent the characteristic properties of the relation is easy both in FOL and

MSFOL: in the first case they can be captured through three universally quan-

tified axioms and nothing is needed in the second case by adopting the logical

equality. On the other hand, to capture the substitution instances generated by

the identity may be more demanding. Again, this is no difficulty for many-sorted

logic with equality as being supported by the aforementioned schema. However,

in the case of FOL we would need to include infinitely many axioms in the

specification. This is due to the impossibility of relying on equivalent terms to

make substitutions (recall that replacement rules are derivable in both logical

systems but they demand logically equivalent formulas as premises). Therefore,

the problem is finitely axiomatizable in MSFOL but not in FOL, meaning that

it cannot be represented by a specification in the sense adopted here. For the

sake of generality, we prefer the former logic.

It appears to be important to mention that the logic above, as an exten-

sion of unsorted classical first-order logic, does not suffer from the pathological

anomaly of the similar extension based on equational logic, namely the unsound-

edness of the extension identified by Goguen and Meseguer (1981). The anomaly

appears in many-sorted equational logic because sort symbols denoting empty

sets are allowed. It is easy to see that this is not the case in classical many-sorted

logic as a consequence of the following theorem:

Theorem 2.6.3 (Total terms) Given a signature ∆ in obj SigMSFOL, the ax-

iom schema below for any t ∈ Term(∆) is provable in MSFOL:

(NVOID) `MSFOL

∆
∃y · t = y (terms do not have a partial interpretation).

Proof:

1. t = t A21-EQ

2. ¬¬¬(t = t)→ ¬(t = t) DOUB

3. (¬¬¬(t = t)→ ¬(t = t))→ (t = t→ ¬¬(t = t)) A3-N

4. t = t→ ¬¬(t = t) R1-MP 2, 3

5. ¬¬(t = t) R1-MP 1, 4

6. ∀y · ¬(t = y)→ ¬(t = t) A19-∀

7. (∀y · ¬(t = y)→ ¬(t = t))→ (¬¬(t = t)→ ¬∀y · ¬(t = y)) CONP

8. ¬¬(t = t)→ ¬∀y · ¬(t = y) R1-MP 6, 7

9. ¬∀y · ¬(t = y) R1-MP 5, 8

10. ∃y · t = y D12-∃ 9 (NVOID)

62 Chapter 2. Proof Theory and Software Development

2.7 First-Order Temporal Logic

We have finally reached a point where it is possible to introduce a really expres-

sive first-order temporal logical system to support software specification and

verification. To assess the power of such a formalism in practice, it suffices to

mention that it can support the representation of concurrent object systems with

a variety of value-passing modes of interaction. It would appear straightforward

to combine PBTL and MSFOL in a way which defines how the temporal con-

nectives interact with the first-order quantifiers. However, such a combination

presupposes many delicate decisions. We choose to define our first-order linear

time entailment system as follows:

Definition 2.7.1 (Many-Sorted Linear Time Logic) The entailment sys-

tem of many-sorted linear time logic, MSLTL, is defined as follows:

• SigMSLTL ∼= SigMSFOL × FinSet such that there exist:

1. Pred, Funct and Sort as in MSFOL, with Pred renamed as Act (for

action symbols), and there is an additional forgetful functor Attr :

SigMSLTL → FinSet which assigns each ∆ in obj SigMSLTL to a set of

attribute symbols, disjoint from those of actions, functions and sorts;

2. Type as in MSFOL, assigning each ∆ in obj SigMSLTL to a type sig-

nature with a new component typeAttr
∆ with dom typeAttr

∆
def
= Attr(∆)

and cod typeAttr
∆

def
= Sort(∆)∗fin → Sort(∆);

• LMSLTL ∼= LMSFOL ∪ LPLTL;

• For each ∆ in obj SigMSLTL, EMSLTL(∆) def
= Act(∆) ∪ Funct(∆) ∪Attr(∆);

• For each ∆ in obj SigMSLTL, Term(∆)s for s ∈ Sort(∆) and GMSLTL(∆)

are (re)defined by TMSLTL

s and FMSLTL as follows, providing x ∈ VMSLTL

∆s
,

f ∈ Funct(∆) with type(f) = 〈s1, . . . , sm〉 → s and g ∈ Attr(∆) with

type(g) = 〈s1, . . . , sn〉 → s:

TMSLTL

s ::= x | f(TMSLTL

s1
, . . . , TMSLTL

sm
) | g(TMSLTL

s1
, . . . , TMSLTL

sn
)

FMSLTL ::= FMSFOL | beg | (FMSLTL)V(FMSLTL)

2.7. First-Order Temporal Logic 63

The following cases are added to the definition of Free and [·] respectively:

Free(g(t1, . . . , tn)) def
=

⋃

{Free(ti)|1 ≤ i ≤ n} ,
for g ∈ Funct(∆) and arity(g) = n

Free(p1Vp2) def
= Free(p1) ∪ Free(p2)

g(t1, . . . , tn)[q\r] def
= g(t1[q\r], . . . , tn[q\r])

for g ∈ Attr(∆) and arity(g) = n

(p1Vp2)[q\r] def
= (p1[q\r])V(p2[q\r])

• For each ∆ in obj SigMSLTL, the entailment relation `MSLTL

∆ is generated

by the proof calculi of MSFOL, PLTL and the following one, provided

that they are all stated over GMSLTL(∆), wherein p and q are included,

that x ∈ VMSLTL with x 6∈ Free(q) and {t1, t2} ⊂ Term(∆)s for some

s ∈ Sort(∆) are such that no attribute symbol appears in ti, 1 ≤ i ≤ 2:

(A23-∃V) `MSLTL

∆ (∃x · p)Vq → ∃x · pVq;

(A24-EQG) `MSLTL

∆ t1 = t2 → G(t1 = t2);

(A25-NEQG) `MSLTL

∆ t1 6= t2 → G(t1 6= t2).

We consider that, while some of the symbols in each signature remain with

the same rigid interpretation adopted in classical first-order logic, some others

acquire a flexible, temporalised meaning. Sort and function symbols always have

the same denotation regardless of the moment or the behaviour in which they

are evaluated. Predicates, on the other hand, now called actions, are to be

understood as representing the occurrence of instantaneous events. Note that

the extra-logical, immediate character of actions herein differs fundamentally

from that of TLA (Lamport 1994), where actions are abbreviational definitions

of transitional formulas. We also include in each signature an additional set of

flexible function symbols, attributes, to represent instantaneous state. Families

of state symbols with slightly distinct definitions appear in the literature as

rigid constants (Andréka et al. 1995), attribute symbols with empty domain,

and global variables (Manna and Pnueli 1983, Lamport 1994), symbols as in

VMSLTL with a temporalised interpretation.

Taking into account the possibility of having variables, sort, function and

predicate symbols with rigid or flexible interpretation (note that in our case we

have families of function symbols in both categories) or even absent in a logic,

and considering moreover that it may be reasonable to prevent quantification

over some families of variables, it is not too difficult to conclude that the number

of conceivable logics obtained by combination of these cases is higher than 250.

64 Chapter 2. Proof Theory and Software Development

Most of these are almost identical or uninteresting. In some other cases such

as for flexible sorts the axiomatisation of the corresponding interpretations be-

comes overly complicated for practical application. Apart from the formalisms

already proposed in the literature aiming at the design of concurrent systems,

it may be worthwhile investigating a logic formulated with rigid and flexible

predicates as well as functions, with the purpose of capturing in a more natural

way with the additional rigid symbols the persistent schemas and static integrity

constraints usually found in database system applications. We shall not explore

this alternative formulation any further here.

The language of MSLTL is such that terms, atoms and formulas are con-

strued almost as in MSFOL. In particular, we do not adopt Xt as a term in the

way proposed by Manna and Pnueli (1983) and later generalised by Fiadeiro and

Sernadas (1990) since it is not clear if the expressive power of the logic increases

at all. The proposed axiom schemas capture the choices described above. A23

is a Barcan formula saying that quantification domains do not vary with the

passing of time. It is due to Mark Reynolds in this form, which entails the more

conventional ∀x ·G(p) → G(∀x · p). Note its similarity with A16, although in

that case the converse is not valid. A24-5 say that terms which do not include

attribute symbols are rigid. Because of the side condition in these schemas, we

loose the substitutivity property which would allow us to substitute sentences by

logically equivalent ones in any context. Although we have already introduced

linguistic support to write frame axioms, which may require, for instance, that

only the actions of an object change the value of its attributes, we postpone

their definition until Chapter 3 where we shall study an object-based approach

to extensible systems design.

The formalisation of the choices above concerning the interpretation of

signature symbols can be carried forward in an analogous way to branching

time as defined below:

Definition 2.7.2 (Many-sorted Branching Time Logic) The entailment

system of many-sorted branching time logic, MSBTL, is defined as follows:

• SigMSBTL ∼= SigMSLTL;

• LMSBTL ∼= LMSLTL ∪ LPBTL;

• EMSBTL ∼= EMSLTL;

• For each ∆ in obj SigMSBTL, GMSBTL(∆) is defined by FMSBTL as follows:

FMSBTL ::= FMSLTL | A(FMSBTL)

2.7. First-Order Temporal Logic 65

The following conditions are added to the definition of Free and [·], re-

spectively, providing p ∈ GMSLTL(∆):

Free(Ap) def
= Free(p)

(Ap1)[q\r] def
= A(p1[q\r])

• For each ∆ in obj SigMSBTL, the entailment relation `MSBTL

∆ is generated by

the proof calculus of MSLTL together with the following one, provided

that they are both stated over GBTMSL(∆), wherein p is included, that

x ∈ VMSBTL and {t1, t2} ⊂ Term(∆)s for some s ∈ Sort(∆) are such that

no attribute symbol appears in ti, 1 ≤ i ≤ 2:

(A26-∀A) `MSBTL

∆ ∀x ·Ap→ A(∀x · p);

(A27-EQA) `MSBTL

∆
t1 = t2 → A(t1 = t2).

A26 and A27, respectively, play the roles of A23 and A24-5 with respect to

the less complex branching modality.

We are now in a more comfortable position to study the required additional

reasoning principles to support the verification of liveness properties. As is

well known, due to the fact that the set of safety properties is closed under

intersection (Alpern and Schneider 1985), it is not possible to verify a liveness

property based only on a set of safety hypotheses. For this reason, liveness

properties are usually stated as part of the axioms in each given specification or

can be derived from particular fairness assumptions made in the axiomatisation

of the temporal logic. In Chapter 3, we shall explore these possibilities to start

the verification process.

It is also fundamental to be able to produce derivations of liveness proper-

ties from previously verified ones. The so-called lattice principle, introduced as

a proof method by Owicki and Lamport (1982) and adopted as a basic inference

rule in (Manna and Pnueli 1979, Lamport 1994), appears to be the most general

way of supporting such derivations. Essentially, based on the premises that ≺ is

a well-founded binary relation and that a property p of a generic element x im-

plies either another distinguished property q being obtained or another element

y related to x being found with the property p, both facts related to the future,

the rule allows one to infer that the existence of an element with the property

p implies the occurrence of the distinguished property q in the future. Such an

occurrence is ensured by the fact that there cannot be an infinitely decreasing

chain of elements related by ≺, which is guaranteed by well-foundedness. In

this way, at least two liveness properties are involved in the form of a complex

premise and a simple conclusion. This inference rule can be stated as follows:

66 Chapter 2. Proof Theory and Software Development

(WELL) {∀x · (p[x]→ F(q ∨ ∃y · y ≺ x ∧ p[y]))} `MSBTL

Φ
(∃z · p[z])→ Fq.

Two issues must be treated if such a reasoning principle is to be adopted:

(i) to show how to specify and verify that some relation is well-founded; and

(ii) to show that the inference rule above is admissible considering a particular

logical system. The connection between well-founded orders and the principle of

transfinite induction with respect to their axiomatisation for temporal reasoning

was studied in detail by Kröger (1987). The requirement in his work of an order

relation appears to be too strong in that transitivity is not necessary anywhere.

In any case, an induction schema11 remains which cannot be classically treated

using the finitist methods for software development required here. This rules out

the possibility of either specifying or verifying within classical first-order logic

only that some formula defines a well-founded relation.

Abadi and Merz (1996) recently realised that the well-foundedness of a bi-

nary rigid relation may be axiomatised in some temporal logical systems. Using

our own system, they would (pseudo)-axiomatise this property as follows:

(IRR) ∀x · ¬(x ≺ x);

(APROG) G(∀x · t = x→ X(t = x ∨ t ≺ x))→ FG(∀x · t = x→ X(t = x))

provided an arbitrarily chosen and unconstrained flexible symbol t having the

same sort as the relation. Intuitively, IRR says that ≺ is irreflexive. APROG

relies on t and the linear infinite discrete character of each behaviour to assess

whether or not ≺ has an infinitely decreasing chain. If t eventually becomes

always invariant whenever it is bound to containing the values in a strictly

decreasing chain, then such a chain necessarily has an end point since the value of

the term could otherwise decrease forever in some behaviour. Because the same

test is performed for every behaviour, since APROG implicitly encompasses

any possible behaviour, and for every sequence of values for t, since this term is

unconstrained, we can conclude that the relation is well-founded.

In order to hide the symbol t and guarantee that it is unconstrained in

APROG, Abadi and Merz (1996) adopted the quantification over flexible logical

variables of TLA. Here, because our logic was intentionally made less expressive

but simpler to define and use, we adopt constructions as follows:

Definition 2.7.3 (Introduction of unconstrained flexible symbol) Given

a specification Φ1 = (∆1,Ψ1) in obj PresMSBTL such that s ∈ Sort(∆1) and

≺ ∈ Act(∆), type(≺) = s× s, the specification Φ2 = (∆2,Ψ2) in obj PresMSBTL

11(TI) ∀x · ((∀y · y ≺ x→ p[x\y])→ p[x])→ ∀x · p[x].

2.7. First-Order Temporal Logic 67

and the morphism Φ1
σ#

→ Φ2 in morph PresMSBTL are an extension of Φ1 by ad-

dition of unconstrained flexible symbol t if the following conditions are fulfilled:

• t ∈ Attr(∆2) with type(t) = ε→ σ(s) such that t 6∈ σ(Attr(∆1));

• Ψ2 only contains σ#(Ψ1) and the following two axioms:

(FREE) ∀x ·E(t = x);

(LIM) AG(∀x · t = x→ XE(t ≺ x))→ EG(∀x · t = x→ X(t ≺ x)).

FREE says that each element of the respective sort may at any moment be the

value of the newly introduced flexible symbol t, ensuring in this way that t is

really unconstrained. LIM guarantees that, if there is always a possibility to

follow an infinitely decreasing chain of elements related by ≺, then there is a

behaviour in which t follows the whole infinite chain, a limit closure axiom. The

construction above can be regarded as a particular instance of the use of auxiliary

symbols to support correctness proofs as originally proposed by Owicki and Gries

(1976) to record part of the history of each behaviour. In particular, the auxiliary

symbol t is introduced here just to support the proof of well-foundedness but is

not needed in (and is actually hidden from) the original specification and can be

discharged afterwards. This is possible because the morphism in our definition

can be shown to determine both a conservative extension and a model expansion,

since the newly introduced properties are all concerning the symbol t. So, the

extension does not really add new properties to the originally specified theory.

A careful reading of the literature on WELL shows that ≺ is assumed

to be an extra-logical symbol with a given rigid interpretation. However, there

is no reason for preventing the relation from being definable in terms of other

symbols nor for disregarding changes in meaning as soon as well-foundedness

is insured. More properties of software systems could be verified by weakening

such assumptions. Therefore, it seems to be reasonable to propose a formula

r ∈ GMSBTL(∆), ∆ in obj SigMSBTL, to serve as a definition of ≺, i.e.:

x ≺ y ↔ r[x, y]

such that ≺ does not appear in r and Free(r) = {x, y}. This process can be

made more systematic as in the introduction of unconstrained flexible symbols: a

new specification is proposed containing in addition just the relation symbol and

its defining axiom. The required morphism should be defined accordingly. This

morphism is automatically made faithful in this way as representing an extension

by explicit definition of a predicate like symbol. Note that ≺ ∈ Act(∆) must

68 Chapter 2. Proof Theory and Software Development

be the case because actions are the only relational symbols allowed in MSBTL

signatures. Whenever r is written in terms of some flexible symbol, ≺ acquires a

flexible meaning. Otherwise, ≺ is rigid and no change is required in the rationale

above. It is important to stress that, should both extensions be necessary, the

composition of the two involved morphisms may also result in another faithful

morphism provided that the extension by definitions be carefully stated so as

to prevent the symbol t from appearing in the formula r. This would harm the

correctness of the whole construction.

To assign a time-dependent meaning to ≺ and obtain a well-founded rela-

tion, we need to define formula r in such a way that at least IRR and APROG

are derivable. Clearly, such a definition cannot involve temporal connectives

since the relation is supposed to associate elements of a particular domain at

isolated time instants. This is called a state formula in the literature (Manna

and Pnueli 1983). Now, even if the meaning of ≺ may change as time passes,

IRR ensures that the relation is always anti-reflexive, which is fundamental be-

cause, if not guaranteed, it would be possible to witness the flexible symbol in

APROG becoming permanently invariant even when all the decreasing chains

of related elements are infinite, making WELL unsound. To admit some change

without harming well-foundedness, we may require in addition that each change

preserves currently related elements, a monotonicity requirement, and moreover

that this process of change eventually stops, a termination requirement. These

conditions prevent ≺ not only from having completely unrelated meanings in

distinct moments but also from allowing decreasing chains which may be in-

definitely extended by the addition of new elements. On the other hand, some

originally unrelated elements may eventually leave this situation. Putting these

requirements together, we reach the following axioms:

(STAB) ∀x, y · x ≺ y → X(x ≺ y)

(TERM) FG(∀x, y · ¬(x ≺ y)→ X(¬(x ≺ y)))

Let us deal with the second issue mentioned above, the admissibility of the

lattice principle. It is not difficult to see that the inference rule WELL would

be derivable if the following axiom schema were also derivable in MSBTL:

∀x · (F(p[x])→ ∃y · F(y ≺ x ∧ p[y]))→ ∀z · ¬F(p[z]) (2.7.1)

For a rigid relation symbol, this schema is equivalent to that of transfinite induc-

tion, which is known to lack a finite axiomatisation within classical first-order

logical systems (Ryll-Nardzwski 1952). To see the equivalence, remove ≺ from

the context of the second temporal connective above based on the assumption

2.7. First-Order Temporal Logic 69

that this symbol is rigid and put q[x] def
= ¬F(p[x]). The resulting sentence is

equivalent to TI. Considering the flexible case, we could have some hope to

show that (2.7.1) is derivable since first-order temporal logical systems such as

MSBTL which possess a linear infinite discrete time dimension are able to in-

terpret minimal arithmetic (Abadi 1989) and thus mathematical induction can

be made available. However, Gentzen (1943) proved that full transfinite induc-

tion is not derivable in any first-order arithmetical system. This is even true for

some definitions of the standard ordering of the natural numbers as shown by

Troelstra and Schwichtenberg (1996). As a consequence of these impossibility

results, we could conclude that WELL is not derivable in any case.

Studying this situation, however, we can see that there are ways of over-

coming the problem. Much in the way that temporal logic can be used to provide

a (pseudo)-axiomatisation of well-foundedness, the same technique of extending

the given specification with an unconstrained flexible symbol can be used to

support an admissible proof rule having the schema above as the conclusion.

So, because we can extend our logical system with such an admissible rule, the

negative results mentioned above are not really restrictive. Gabbay (1981) uses

the same idea of introducing new symbols in derivations in order to prove com-

pleteness of many propositional temporal logical systems. Here, the respective

rule is stated as follows:

Proposition 2.7.4 (Admissibility of INTRO) Assume that s ∈ Sort(∆),

t ∈ Attr(∆) with type(t) = ε → s and ≺ ∈ Act(∆) with type(≺) = s × s for a

given ∆ in obj SigMSTBL. The following inference rule is admissible in MSBTL:

(INTRO) 1. IRR 4. APROG
2. STAB 5. FREE
3. TERM 6. LIM

∀x · (F(p[x])→ ∃y · F(y ≺ x ∧ p[y]))→ ∀x · ¬F(p[x])

Note that INTRO, a rule for introducing t in derivations, has the axioms studied

above as premises and (2.7.1) as the conclusion. If we can adopt this inference

rule as part of our proof calculus, we can show that WELL is derivable. We

postpone this admissibility proof until Section 2.9, calling the extended logical

system MSBTL+.

Theorem 2.7.5 (Admissibility of WELL) Assume that s ∈ Sort(∆), t ∈

Attr(∆) with type(t) = ε → s and ≺ ∈ Act(∆) with type(≺) = s × s for

a given Φ = (∆,Ψ) in obj PresMSTBL+

. Provided that FREE, LIM, IRR,

APROG, STAB and TERM are derivable considering these symbols, the

70 Chapter 2. Proof Theory and Software Development

following inference rule, for {p, q} ⊆ GMSBTL+
(∆) and x ∈ VMSBTL+

such that

x 6∈ Free(q), is also derivable in MSBTL+:

(WELL) {∀x · (p[x]→ F(q ∨ ∃y · y ≺ x ∧ p[y]))} `MSBTL+

Φ
(∃z · p[z])→ Fq.

Proof: We follow the structure of the proof developed by Kröger (1987). Essen-

tially, we need to substitute the use of the transfinite induction in his work by

an application of the inference rule proposed above:

1. ∀x · (p[x]→ F(q ∨ ∃y · y ≺ x ∧ p[y]) Ass

2. G(p[x]→ F(q ∨ ∃y · y ≺ x ∧ p[y])) A19-∀, R1-MP 1, R2-G

3. F(p[x])→ FF(q ∨ ∃y · y ≺ x ∧ p[y]) MON-GF, R1-MP 2

4. FF(q ∨ ∃y · y ≺ x ∧ p[y])→ F(q ∨ ∃y · y ≺ x ∧ p[y]) IDEM-F

5. F(p[x])→ F(q ∨ ∃y · y ≺ x ∧ p[y]) HS 3, 4

6. F(q ∨ ∃y · y ≺ x ∧ p[y])→ Fq ∨F(∃y · y ≺ x ∧ p[y]) DIST-ORF

7. F(p[x])→ Fq ∨ F(∃y · y ≺ x ∧ p[y]) HS 5, 6

8. F(∃y · y ≺ x ∧ p[y])→ Fq ∨ ∃y · F(y ≺ x ∧ p[y]) BARC-F, OR-R

9. Fq → Fq ∨ ∃y · F(y ≺ x ∧ p[y]) REFL, OR-R

10. Fq ∨ F(∃y · y ≺ x ∧ p[y])→ Fq ∨ ∃y · F(y ≺ x ∧ p[y]) OR-L 8, 9

11. ∀x · (F(p[x])→ Fq ∨ ∃y · F(y ≺ x ∧ p[y])) HS 7, 10; GEN-∀

12. F(p[z])→ Fq INTRO, R1-MP 11, A19-∀, R1-MP

13. p[z]→ Fq REFL, OR-R, D8-F, HS 12

14. (∃z · p[z])→ Fq GEN-∀ 13, EXC-∀∃, HS (WELL)

The application of INTRO is very demanding. We have to obtain be-

forehand all the special purpose axioms studied in this section. When the given

relation is rigid, we can simplify this process by showing that STAB and TERM

follow from the rigid interpretation of ≺. The theorem below allows us to gen-

eralise in time all the sentences written only in terms of rigid symbols:

Theorem 2.7.6 (Invariant rigid formulas) The axiom schema below is prov-

able in MSBTL for any sentence p ∈ GMSBTL(∆) ∩ S+, where S is the set

S def
= V

MSBTL ∪ Funct(∆) ∪ (LMSFOL − {beg}), for any ∆ in obj SigMSBTL:

(RIGID) `MSBTL

∆
p→ Gp.

Proof: We first examine atomic formulas and then proceed by structural induc-

tion on GMSBTL(∆). Without attribute and action symbols in the underlying

language, the possible atomic formulas can only be equality tests of the form

p ≡ (t1 = t2), for {t1, t2} ⊂ Term(∆)s, s ∈ Sort(∆). But we have A24 which

ensures p→ Gp in this case. For the induction we have the following cases:

• p ≡ ¬q:

2.7. First-Order Temporal Logic 71

1. (q → ⊥)→ G(q → ⊥) Ind. Hyp.

2. ¬q → (q → ⊥) NEG-L, PERM, R1-MP, D2-⊥

3. ¬q → G(q → ⊥) HS 2, 1

4. (g → ¬⊥)→ ((q → ⊥)→ ¬q) NEG-R, PERM, R1-MP

5. q → > A1-I, D1->

6. (q → q)→ ¬¬(q → q) DOUB, A3-N, R1-MP

7. g → ¬⊥ D1->, D2-⊥ 6, HS 5

8. (q → ⊥)→ ¬q R1-MP 4, 7

9. G(q → ⊥)→ G(¬q) R2-G 8, MON-G, R1-MP

10. ¬q → G(¬q) HS 5, 9

• p ≡ q → r:
1. ¬q → G(¬q) Ind. Hyp.

2. r → Gr Ind. Hyp.

3. ¬q ∨ r → G(¬q) ∨Gr OR-R 1, OR-R 2, OR-L

4. G(¬q) ∨Gr → G(¬q ∨ r) DIST-ORG

5. ¬q ∨ r → G(¬q ∨ r) HS 3, 4

6. (¬¬q → r)→ G(¬¬q → r) D3-OR 5

7. (q → r)→ (¬¬q→ r) DOUB, RTRAN, R1-MP

8. (q → r)→ G(¬¬q → r) HS 7, 6

9. q → ¬¬q DOUB, A3-N, R1-MP

10. (q → ¬¬q)→ ((¬¬q → r)→ (q → r)) LTRAN

11. (¬¬q → r)→ (q → r) R1-MP 9, 10

12. G(¬¬q → r)→ G(q → r) R2-G 11, MON-G, R1-MP

13. (q → r)→ G(q → r) HS 8, 12

• p ≡ ∀x · q:
1. q → Gq Ind. Hyp.

2. ∀x · (q → Gq) GEN-∀ 1

3. ∀x · (q → Gq)→ (∀x · q → ∀x ·Gq) MON-∀

4. ∀x · q → ∀x ·Gq R1-MP 2, 3

5. ∀x ·Gq → G(∀x · q) BARC-G

6. ∀x · q → G(∀x · q) HS 4, 5

• p ≡ qVr:
1. q → Gq Ind. Hyp.

2. ⊥ → r REFL, NEG-L, R1-MP, D2-⊥

3. Xq → qVr R2-G 2, A4-GV, R1-MP, D7-X

4. GXq → G(qVr) R2-G 3, MON-G, R1-MP

5. GGq → GXq RPL-GX, R2-G, MON-G, R1-MP

6. Gq → GXq IDEM-G, HS 5

7. q → G(qVr) HS 1, 6; HS 4

8. G(q → G(qVr)) R2-G 7

9. Xq → XG(qVr) MON-GX, R1-MP 8

10. G(G(qVr)→ qVr) REFL-G, R2-G

11. XG(qVr)→ X(qVr) MON-GX, R1-MP 10

72 Chapter 2. Proof Theory and Software Development

12. Xq → X(qVr) HS 9, 11

13. qVr → X(q ∨ r ∧ qVr) FIX-V

14. X(q ∨ r ∧ qVr)→ Xq ∨X(r ∧ qVr) A9-V, D7-X

15. Xr ∧X(qVr)→ X(qVr) REFL, AND-L

16. X(r ∧ qVr)→ X(qVr) DIST-ANDX, R1-MP 15

17. Xq ∨X(r ∧ qVr)→ X(qVr) OR-L 11, 16

18. qVr → X(qVr) HS 13, 14; HS 17

19. qVr → G(qVr) R1-G 18, A10-G, R1-MP

• p ≡ Aq:
1. q → Gq Ind. Hyp.

2. A(q → Gq) R4-A 1

3. Aq → AGq A13-A, R1-MP 2

4. AGq → GAq COM-AG

5. Aq → G(Aq) HS 3, 4 (RIGID)

Let us recall the main purpose of the proposition and theorems above.

We wanted to establish a design discipline to support the verification of live-

ness properties. Now we can say it consists in the following steps: (i) if nec-

essary, extend the given specification with the relation symbol and a suitable

explicit definition; (ii) extend the specification with an arbitrarily chosen un-

constrained flexible symbol via a faithful morphism; (iii) derive IRR, APROG

and also STAB and TERM if required; (iv) derive the liveness property based

on WELL. All these steps are justified by the previous results. A complete

example will be provided in Chapter 3.

Some authors attempt to deal with the problem above in distinct ways.

Lamport (1994) adopts a basic inference rule for well-founded induction but does

not explain in full detail how the required premise in the rule is to be obtained.

Abadi and Merz (1996) sketch a solution adopting the quantification over flexible

variables of TLA, which is known to increase considerably the expressive power

of any temporal proof calculus. On the other hand, it is not clear how this and

the other logical connectives are related. Andréka et al. (1995) prefers to adopt a

structural induction schema over so-called data-domains, which are specified in

non-standard first-order temporal logic. All these authors have only considered

the case in which a rigid relation symbol is given.

2.8 A Particular Model Theory

Semantic models for branching time such as transition systems and event struc-

tures abound in the literature. The following definition is of the first kind:

2.8. A Particular Model Theory 73

�
�
�
��>

�
�
�
��>

-

Z
Z
Z
ZZ~

Z
Z
Z
ZZ~

6

Z
Z
Z
ZZ~

�
�
�
��>

CPL

FOL

PLTL

MSFOL

MSLTL

PBTL

MSBTL

Figure 2.14: Faithful logical system embeddings.

Definition 2.8.1 (Branching Time Structure) A branching time structure

or frame is a tuple (α, α0, ρ, Λ) where:

• α and α0 ⊆ α are sets of worlds and initial worlds respectively;

• ρ : α→ P (α) is the accessibility relation (a powerset function);

• Λ is a non-empty set of possible behaviours. Each L ∈ Λ is a function

such that12: (i) dom L ⊆ α and cod L def
= N; (ii) L(w) = 0 iff w ∈ α0; (iii)

∀w,w′ ∈ dom L · L(w) = L(w′)→ w = w′; (iv) ∀n ∈ cod L · ∃w ∈ dom L ·

L(w) = n; and (v) ∀w,w′ ∈ dom L · L(w′) = L(w) + 1→ w′ ∈ ρ(w).

The sequences of worlds which determine behaviours in Λ (not necessarily of any

computer program) are in a one to one correspondence with the set of natural

numbers, according to (iii) and (iv). Hence, each L ∈ Λ is invertible and we

shall use this fact to define the meaning of A. It is also in this semantic way

that problematic cyclic flows of time are avoided. Concerning the semantic

assumptions over branching time structures proposed in the literature, it is easy

to see that prefix (Stirling 1992), suffix and fusion (Emerson 1983) closures do

not follow from our definition.

Based on branching time structures, signature symbols are interpreted as:

Definition 2.8.2 (Interpretation Structure) An interpretation structure for

a signature ∆ is a tuple θ = (T , U , G, A) where:

12Recall that we deal with ω-long behaviours only, as explained in Section 2.4.

74 Chapter 2. Proof Theory and Software Development

• T is a branching time structure;

• U maps each s ∈ Sort(∆) to a non-empty collection sU and each f ∈

Fun(∆) with type(f) = 〈s1, . . . , sn〉 → s to a function fU : s1U
× . . . ×

snU
→ sU ;

• G maps each g ∈ Attr(∆) with type(g) = 〈s1, . . . , sn〉 → s to a function

G(g) : s1U
× . . .× snU

→ α→ sU ;

• A maps each a ∈ Act(∆) with type(a) = 〈s1, . . . , sn〉 to a function A(a) :

s1U
× . . .× snU

→ P (α).

We adopt the interpretation structures above as models of logical formulas. As

a result, whenever a formula has a model, the sets of worlds α and α0 in the

underlying frame are not empty. Note how α appearing as an argument in

the interpretation of some symbols is related to their flexible, time-dependent

meaning. Interpreting symbols in Act(∆) particularly shows that the respective

actions may happen in parallel among themselves, in which case this is specified

through the conjunction of their symbols, or with respect to other actions in the

environment. This is much in keeping with the open but not necessarily inter-

leaving semantics proposed in (Barringer 1987, Fiadeiro and Maibaum 1992).

The notion of reduct of a model along a signature morphism will also be useful

in our subsequent investigations:

Definition 2.8.3 (Reduct of a model) Given ∆1
τ
→ ∆2 in morph SigMSBTL

and an interpretation structure θ2 = (T2, U2, G2, A2) for ∆2, the model θ1 =

(T2, U2 ◦ τ , G2 ◦ τ , A2 ◦ τ) is called the τ -reduct of θ2.

We interpret terms as defined below. Because we have a first-order logic, it

is first necessary to define how logical variables (which are not specified as part of

signatures) are assigned to the elements of quantification domains. Assignments

are alternatively called valuations:

Definition 2.8.4 (Assignment) Given an interpretation structure θ for a sig-

nature ∆, an assignment N for θ maps each set Class(∆)s to sU .

Definition 2.8.5 (Interpretation of Terms) Given an interpretation struc-

ture θ = (T , U , G, A) for a signature ∆ and an assignment N for θ, the function

[[]]θ,N : α→ sU defined as follows is an interpretation of terms of sort s ∈ Sort(∆)

at a world w ∈ α:

• [[x]]θ,N(w) def
= N(x) if x ∈ Class(∆)s;

2.8. A Particular Model Theory 75

• [[f(t1, . . . , tn)]]θ,N(w) def
= fU([[t1]]θ,N(w), . . . , [[tn]]θ,N(w));

• [[g(t1, . . . , tn)]]θ,N(w) def
= (G(g)([[t1]]θ,N(w), . . . , [[tn]]θ,N(w)))(w).

We have said that the branching modality of our logic is to be interpreted

with the help of an equivalence relation over behaviour prefixes. We define such

a relation in a pointwise manner, in terms of the equivalence of worlds composing

the possible behaviours of a structure, as follows:

Definition 2.8.6 (Equivalent worlds) Two worlds {w,w′} ⊂ α of a branch-

ing time structure T = (α, α0, ρ,Λ) in an interpretation θ = (T , U , A, G) for a

signature ∆ are said to be equivalent, w ' w′, if and only if

∀g ∈ Attr(∆) · ∀x1, . . . , xn ·G(g)(x1, . . . , xn)(w) = G(g)(x1, . . . , xn)(w′)

∀a ∈ Act(∆) · ∀x1, . . . , xn · w ∈ A(a)(x1, . . . , xn)⇔ w′ ∈ A(a)(x1, . . . , xn)

Indeed, ' is an equivalence relation being reflexive, symmetric and transitive

due to the equality and the biconditional in the sentences above. Since we choose

the usual interpretation of logical formulas below, it is not difficult to conclude

by induction that equivalent worlds satisfy the same set of state formulas, those

formed out of variables, signature symbols and classical connectives only. Hence,

two behaviours are considered to be equivalent up to a given moment if and only

if they have identical past histories, i.e., they satisfy at each previous moment

the same set of such formulas. This is again an equivalence relation because

of the same property of '. Note that these internal notions of equivalence are

different from the usual external notion of zig zags (van Benthem 1984) because

they relate states and behaviours of a model as opposed to the relations between

models, interpretation structures, defined by zig zags.

We use the above to define the satisfaction of logical formulas:

Definition 2.8.7 (Satisfaction of Formulas) Given a signature ∆, the sat-

isfaction of a ∆-formula at world wi of a behaviour L (i.e., wi ∈ dom L) by a

structure θ = (T , U , G, A) with assignment N is defined as follows:

S1. (θ,N, L, wi) |= a(t1, . . . , tn) iff wi ∈ A(a)([[t1]]
θ,N(wi), . . . , [[tn]]θ,N(wi));

S2. (θ,N, L, wi) |= ¬p iff it is not the case that (θ,N, L, wi) |= p;

S3. (θ,N, L, wi) |= p→ q iff (θ,N, L, wi) |= p implies (θ,N, L, wi) |= q;

S4. (θ,N, L, wi) |= ∀x · p iff for every v ∈ cod N and assignment Nv for θ such

that Nv(y) = N(y) if y 6= x and Nv(y) = v otherwise, (θ,Nv, L, wi) |= p;

76 Chapter 2. Proof Theory and Software Development

S5. (θ,N, L, wi) |= (t1 = t2) iff [[t1]]θ,N(wi) = [[t2]]
θ,N(wi);

S6. (θ,N, L, wi) |= beg iff L(wi) = 0;

S7. (θ,N, L, wi) |= pVq iff there is wj ∈ dom L with L(wi) < L(wj), (θ, N , L,

wj) |= p and (θ,N, L, wk) |= q for any wk ∈ dom L where L(wi) < L(wk) <

L(wj);

S8. (θ,N, L, wi) |= Ap iff for every Lj ∈ Λ such that wk ' (L−1
j ◦ L)(wk) for

each wk ∈ dom L with L(wk) < L(wi), (θ,N, Lj, (L
−1
j ◦ L)(wi)) |= p.

The definition of satisfiability above determines a floating interpretation for our

logic, according to the terminology of Manna and Pnueli (1989). That is, the

initial instant has no special significance in the interpretation, even though it

is represented as the logical connective beg. Based on this definition, it is not

difficult to prove by structural induction that:

Proposition 2.8.8 (Equivalent worlds satisfy the same state formulas)

Given an interpretation structure θ = ((α, α0, ρ, Λ), U , G, A) for a signature ∆

and an assignment N for θ, w ' w′ iff for any state formula p, (θ,N, L, w) |= p

iff (θ,N, L′, w′) |= p for any {L, L′} ⊆ Λ such that w ∈ dom L, w′ ∈ dom L′.

We define an ascending series of degrees of validity as suggested by Chellas

(1980). Definition 2.8.7 corresponds to satisfiability. We say that a ∆-formula

p is locally true in an interpretation structure θ = (T , U , G, A) for ∆ at world

w of a behaviour L if and only if for every assignment N , (θ,N, L, w) |= p.

A sentence p, a formula such that Free(p) = { }, is true in θ if and only if

locally true in each behaviour L and world w such that w ∈ dom L. We write

θ |= p in this case. A semantic consequence relation over a model θ, Ψ |=θ

∆
p,

is simply defined by saying that θ |= q for every sentence q ∈ Ψ implies θ |= p.

If we require this for every model, we obtain the semantic consequence relation

Ψ |=
∆
p. Completing our hierarchy, p is said to be valid in T if and only if true

in any θ based on T . A sentence is considered to be universally valid if and only

if it is valid in any branching time structure.

As a last word in this section, it is important to mention that restricting

the language and the interpretation structures above in some particular ways

result in models of other logics studied in this chapter. For instance, if we

forget assignments and quantifiers we obtain propositional branching time logic

models. Forgetting the branching modality and that interpretations consist of

non-empty collections of behaviours, we obtain models of linear time logic by

picking up single elements from each such collection of behaviours. Models

2.9. Some General Logical Results 77

for classic propositional logic are obtained by forgetting completely the time

dimension and the respective connectives.

2.9 Some General Logical Results

Our main purpose in this section is to show that MSBTL is a logical system

in the precise sense of Definition 2.2.7. We have already shown that all the

required properties to define a full entailment system are fulfilled. Now we have

to ensure that MSBTL determines an institution.

We first deal with the problem of defining a category of models associated

to each signature. The structure of the objects in this category has already been

defined in Section 2.8 in the form of interpretation structures. The collection

of functions admitted as morphisms in such categories normally results from

an arbitrary decision concerning the particular modal logic, so we adopt here

an extended version of the so-called p-morphisms (Segeberg 1970). Given a

signature ∆ with two interpretation structures θi = (Ti, Ui, Gi, Ai) such that Ti

= (αi, α0i
, ρi, Λi), 1 ≤ i ≤ 2, a first-order p-morphism (fp-morphism for short)

τ : θ1 → θ2 is a pair (τU , τα), where τα : α1 → α2, τU : U1 → U2 and τU is a

model homomorphism of the classical first-order functional calculus (recall that

predicates have a temporalised interpretation here). It is important to mention

that the following condition is required from any such an homomorphism. For

every f ∈ Funct(∆), si ∈ Sort(∆), the following diagram commutes:

-

? ?-

s∗U1
s∗U2

sU1 sU2

τ∗
U

τU

τU (fU)fU (2.9.1)

Moreover, for each fp-morphism (τU , τα), τα is required to map behaviours

onto behaviours and the following conditions must be obeyed, for every world

{wi, w
′
i} ⊆ αi, 1 ≤ i ≤ 2:

(i) w1 ∈ α01 ⇒ τα(w1) ∈ α02 ;

(ii) w′
1 ∈ ρ1(w1)⇒ τα(w′

1) ∈ ρ2(τα(s1));

(iii) w′
2 ∈ ρ2(τα(w1))⇒ ∃w′

1 · w
′
1 ∈ ρ1(w1) ∧ τα(w′

1) = w′
2;

(vi) For every g ∈ Attr(∆) such that arity(g) = n,

∀x1, . . . , xn·τU(G1(g)(x1, . . . , xn)(w1)) = G2(g)(τU(x1), . . . , τU(xn))(τα(w1));

78 Chapter 2. Proof Theory and Software Development

(v) For every a ∈ Act(∆) such that arity(a) = n,

∀x1, . . . , xn·w1 ∈ A1(a)(x1, . . . , xn)⇔ τα(w1) ∈ A2(a)(τU (x1), . . . , τU(xn)).

With the definition above, it is not difficult to check that ASS and ID are

obtained, validating the following proposition:

Proposition 2.9.1 (Categories of MSBTL Models) The collections of in-

terpretation structures and fp-morphisms for each signature ∆ in obj SigMSBTL

determine a ∆-indexed family of categories of models ModMSBTL

∆ .

Note in the definition of institution that each signature ∆ in obj SigMSBTL

is assigned to a category of models ModMSBTL

∆ by a contravariant functor Mod :

SigMSBTL → Catop. Considering the fp-morphisms defined above, this functor

can be defined as follows:

1. Mod(∆) def
= ModMSBTL

∆ for each ∆ in obj SigMSBTL;

2. Mod(σ : ∆1 → ∆2) def
= Mod(σ) : Mod(∆2) → Mod(∆1) for each ∆i in

obj SigMSBTL, 1 ≤ i ≤ 2, and each SigMSBTL-morphism σ;

3. For each ∆1
σ
→ ∆2 in morph SigMSBTL, the following diagram commutes

for each θi = (Ti, Ui, Gi, Ai) in obj ModMSBTL

∆i
, 1 ≤ i ≤ 2, and each pair

(X, Y) in the set {(Sort, U), (Funct, U), (Attr, G), (Act, A)}:

-

? ?�

X1(∆1) (σ ◦X1)(∆1)

(Y1 ◦X1)(∆1) (Y2 ◦ σ ◦X1)(∆1)

σ

Mod(σ)

Y2Y1 (2.9.2)

4. For each ∆1
σ
→ ∆2 in morph SigMSBTL, θi = (Ti, Ui, Gi, Ai) in obj ModMSBTL

∆i
,

Ti = (αi, α0i
, ρi,Λi), 1 ≤ i ≤ 2, and each θ1

τ
→ θ2 in morph ModMSBTL

∆i
, the

following diagram commutes for each pair (X,ϕ) in the set {(U, τU), (α, τα)}:

-

? ?-

X1 X2

Mod(σ)(X1) Mod(σ)(X2)

ϕ

Mod(σ)(ϕ)

Mod(σ)Mod(σ) (2.9.3)

The last two conditions above are to guarantee that the structure of each cate-

gory of models is preserved by the model functor.

2.9. Some General Logical Results 79

Lemma 2.9.2 (MSBTL Institution) With the definitions provided above,

the tuple (SigMSBTL, GMSBTL, Mod, |=MSBTL) is an institution.

Proof: We only need to verify that the satisfaction condition is fulfilled. That is,

for every ∆1
σ
→ ∆2 in morph SigMSBTL, p ∈ GMSBTL(∆1) and θ in obj Mod∆2,

θ |=MSBTL

∆2
σ#(p)⇔Mod(σ)(θ) |=MSBTL

∆1
p

In particular, p can only be a sentence in this assertion since the notion of truth

in a model as defined in Section 2.8 makes this requirement.

Without loss of generality, we can sketch this proof considering that ∆1 and

∆2 are the same signature. This is due to the compositional definition of term,

sentence and assignment functors and also due to (2.9.2) and (2.9.3), which

guarantee that each category of models has an exact image along signature

morphisms. That is, the internal structure of each model is matched exactly

(2.9.2) and the same happens to the internal structure of each fp-morphism

(2.9.3). Note, however, that more objects and morphisms may be present in the

source category of models and more symbols may exist in the target signature.

These do not create a problem because we only need to work with the image of

σ and the respective reducts proving the satisfaction condition. The remainder

of the co-domain of these morphisms can be safely ignored.

Now we can develop the rest of the proof by a structural induction argu-

ment on the grammar of the language. Consider a fixed signature ∆ with models

θi = (Ti, Ui, Gi, Ai) such that Ti = (αi, α0i
, ρi, Λi), 1 ≤ i ≤ 2, and θ2

τ
→ θ1. We

wish to show that for any L2 ∈ Λ2 and any w2 ∈ dom L2, (θ2, N
′, L2, w2) |= p

for any assignment N ′ for θ2 if and only if (θ1, N, τ
#(L2), τ(w2)) |= p for any

assignment N for θ1. This is an extension of the well-known p-morphism lemma

in the modal logics literature (Goldblatt 1992). We examine in the subsequent

paragraph the base case of the induction argument and then proceed with some

interesting cases of the induction step.

Given rigid terms ti ∈ Term(∆)s, 1 ≤ i ≤ 2, s ∈ Sort(∆), we have

(θ2, N
′, L2, w2) |= (t1 = t2) if and only if [[t1]]θ2,N ′

(w2) = [[t2]]θ2,N ′

(w2). Be-

cause each ti is assumed to be rigid, their interpretations do not depend on

the underlying world. Assume in addition that each ti is a constant, i.e.,

ti ∈ Funct(∆) such that type(ti) = ε → s, and then their interpretations

will not depend on the assignment as well. Due to the functionality of τU ,

[[t1]]θ1,N(τ(w2)) = [[t2]]
θ1,N(τ(w2)). Hence, (θ1, N, τ

#(L2), τ(w2)) |= (t1 = t2). The

converse is proved observing that for constants the homomorphism condition

(2.9.1) requires that [[t1]]θ2,N ′

(w2) = τ([[t1]]θ2,N ′

(w2)). For non-rigid constants,

case (iv) in the definition of fp-morphism guarantees that the biconditional

80 Chapter 2. Proof Theory and Software Development

above can be obtained. This rationale easily generalises to any kind of term

and to state formulas as well.

Let us examine the temporal formulas. Assume that (θ2, N
′, L2, w2) |=

beg. Linking S6, requirements (ii) in Definition 2.8.1 and (i) in the definition

of fp-morphism, we infer that τ(w2) ∈ α01 . Then, the first two applied in

the inverse order also justify (θ1, N, τ
#(L2), τ(w2)) |= beg. For the converse,

suppose that (θ1, N, τ
#(L2), τ(w2)) |= beg but (θ2, N

′, L2, w2) |= beg is not the

case. The first conjunct ensures that τ(w2) is the first element in dom τ#(L2).

Moreover, the second one shows that ∃w3 ∈ dom L2 ·L2(w2) = L(w3) + 1. Using

condition (ii) in the definition of fp-morphisms shows that τ(w2) is not the first

element in dom τ#(L2), which generates a contradiction. We conclude that

(θ2, N
′, L2, w2) |= beg iff (θ1, N, τ

#(L2), τ(w2)) |= beg. The case of pVq is

developed based on the back and forth conditions (iii) and (ii). The Ap case is

developed based on the fact that each τα is onto concerning behaviours.

We have concluded that (θ2, N
′, L2, w2) |= p iff (θ1, N, τ

#(L2), τ(w2)) |= p

for any p ∈ G(∆). Extending this partial result to the case where we have models

for different signatures, assume in addition that ∆1
σ
→ ∆2, θ1 in obj Mod∆2 ,

Mod(σ) = τ and τ(θ2) = θ1. Applying the different morphisms and functors

involved in this situation, we obtain θ1 |=∆2
σ#(p) if and only if θ2 |=∆1

p.

Therefore, the tuple above is an institution. (MSBTL Institution)

We turn to the verification of the soundness condition in Definition 2.2.5:

Lemma 2.9.3 (Soundness of MSBTL) MSBTL is sound.

Proof: We show in the usual way, based on the notion of satisfaction, that each

logical axiom is universally valid and the application of each inference rule pre-

serves validity, meaning that valid premises imply valid conclusions. We present

here the interesting cases only, leaving the verification of the remaining cases for

Appendix II. An additional structural induction argument on our Hilbert-style

proofs will suffice to guarantee that each entailment preserves validity.

We prove that each inference rule in Figure 2.15 preserves validity as fol-

lows, assuming that an underlying signature ∆ with a branching time structure

T are given and also that the notion of satisfaction for the derived connectives

has already been worked out. Whenever necessary, we denote by θ′T an inter-

pretation structure which is obtained from θ = (T , U , G, A) by varying all the

components apart from the frame T .

(R1-MP) Assume that (i) (θT , N, L, wi) |= p for any θT , N , L, wi ∈ dom L

and (ii) (θ′T , N
′, L′, w′

i) |= p → q for any θT , N , L and wi ∈ dom L. From

2.9. Some General Logical Results 81

Syntax: For a given signature ∆, we have:
(Terms) T ::= x (variables) | f(T1, . . . , Tm) (functions) | g(T1, . . . , Tn) (attributes)
(Atoms) A ::= Ts = Ts (equality) | a(T1, . . . , Tn) (actions)
(Formulas) F ::= A | ¬F | F → F | (F) | ∀x · F | beg | (F)V(F) | A(F)

Definitions:
(D1−>) > def

= p→ p (D2−⊥) ⊥ def
= ¬>

(D3−OR) (p ∨ q) def
= (¬p→ q) (D4−AND) (p ∧ q) def

= ¬(p→ ¬q)
(D5− IFF) (p↔ q) def

= (p→ q) ∧ (q → p) (D6−X) Xp def
= pV⊥

(D7−U) pUq def
= q ∨ (p ∧ qVp) (D8− F) Fp def

= >Up

(D9−G) Gp def
= ¬F(¬p) (D10−W) pWq def

= Gp ∨ pUq

(D11−E) Ep def
= ¬A(¬p) (D12− ∃) ∃x · p def

= ¬∀x · ¬p
(D13−NEQ) t1 6= t2 def

= ¬(t1 = t2)
(D14−UNI) ∃! x · p[x] def

= ∃x · (p[x] ∧ ∀y · p[y]→ x = y)

Axioms: In A20 and A23, x 6∈ Free(p); in A19, A24-5 and A27,
(E(t) ∪ E(t1) ∪ E(t2)) ∩ Attr(∆) = { }; p ∈ Atom(∆) in A22:

(A1− I) p→ (q → p)
(A2− I) (p→ (q → r))→ ((p→ q)→ (p→ r))
(A3−N) (¬p→ ¬q)→ (q → p)
(A4−GV) G(p→ q)→ (pVr → qVr)
(A5−GV) G(p→ q)→ (rVp→ rVq)
(A6−V) pVq → pV(q ∧ pVq)
(A7−V) (p ∧ qVp)Vp→ qVp

(A8−V) pVq ∧ rVs→ (p ∧ r)V(q ∧ s) ∨ (p ∧ s)V(q ∧ s) ∨ (q ∧ r)V(q ∧ s)
(A9−V) (p ∨ q)Vr → pVr ∨ qVr

(A10−G) G(p→ Xp)→ (p→ Gp)
(A11−X) X>
(A12−Xbeg) ¬X(beg)
(A13−A) A(p→ q)→ (Ap→ Aq)
(A14−A) Ap→ p

(A15−EA) Ep→ AEp

(A16−EV) (Ep)Vq → E(pVq)
(A17−AU) A(p→ X(qUp))→ (p→ XA(qUp))
(A18−Ebeg) E(beg)→ beg
(A19− ∀) (∀x · p[x])→ p[x\t]
(A20− ∀) ∀x · (p→ q)→ (p→ ∀x · q)
(A21−EQ) t = t

(A22−EQ) t1 = t2 → (p{q\t1} → p{q\t2})
(A23− ∃V) (∃x · q)Vp→ ∃x · qVp

(A24−EQG) t1 = t2 → G(t1 = t2)
(A25−NEQG) t1 6= t2 → G(t1 6= t2)
(A26− ∀A) ∀x ·Ap→ A(∀x · p)
(A27−EQA) t1 = t2 → A(t1 = t2)

Inference Rules: In R5, we consider that x 6∈ Free(p):
(R1−MP) {p, p→ q} ` q (R2−G) {p} ` Gp

(R3− begG) {beg→ Gp} ` p (R4−A) {p} ` Ap

(R5− ∀) {p→ q} ` p→ ∀x · q

Figure 2.15: Definition of MSBTL.

82 Chapter 2. Proof Theory and Software Development

(ii) and S3, we infer that (θT , N, L, wi) |= p implies (θ′T , N
′, L′, w′

i) |= q,

moving in this way the quantification over interpretations, assignments,

behaviours and worlds to range over each instance of the satisfaction re-

lation in isolation. Using (i), we conclude that (θ′T , N
′, L′, w′

i) |= q for any

θ′T , N ′, L′ and w′
i ∈ dom L′;

(R2-G) Assume that (θT , N, L, wi) |= p for any θT , N , L and wi ∈ dom L. For

a fixed L, we consequently have for every wj ∈ dom L that (θT , N, L, wj) |=

p, which is equivalent to saying that (θT , N, L, wi) |= Gp for any θT , N , L

and wi ∈ dom L, according to the definition of satisfaction of Gp;

(R3-begG) Assume that (θT , N, L, wi) |= beg → Gp for any θT , N , L and

wi ∈ dom L. In particular, for w0 ∈ dom L such that L(w0) = 0, we

have (θT , N, L, w0) |= beg → Gp. An application of S3 shows that (θT ,

N , L, w0) |= beg implies (θT , N, L, w0) |= Gp, but the antecedent of

this conditional is evident given S6 and the definition of w0. From the

consequent of the conditional and the definition of satisfaction of Gp, we

conclude that (θT , N, L, wi) |= p for any θT , N , L and wi ∈ dom L;

(R4-A) Assume that (θT , N, L, wi) |= p for any θT , N , L and wi ∈ dom L. For

a fixed L, we have, for every Li ∈ Λ such that sk ' (L−1
i ◦L)(wk) for each

wk ∈ dom L with L(wk) < L(wi), that (θT , N, Li, (L
−1
i ◦L)(wi)) |= p, based

on our assumption and that each Li is invertible. From S8, we conclude

that (θT , N, L, wi) |= Ap for any θT , N , L and wi ∈ dom L;

(R5-∀) Assume that (θT , N, L, wi) |= p → q for any θT , N , L and wi ∈ dom L

and also that x 6∈ Free(p). So, from S3, (i) (θT , N, L, wi) |= p implies

(θT , N, L, wi) |= q. Now, for each v ∈ cod N , define Nv as Nv(y) def
= N(y)

if y 6= x or Nv(y) def
= v otherwise. Note that, because x 6∈ Free(p), (ii)

(θT , N, L, wi) |= p implies (θT , Nv, L, wi) |= p, by structural induction

on the notions of interpretation and satisfaction based on the definitions

of Free and assignments. Substituting N for Nv in (i), we obtain (iii)

(θT , Nv, L, wi) |= p implies (θT , Nv, L, wi) |= q. Moving the quantification

over Nv inwards in (ii) and connecting this statement to (iii), we infer that

(θT , N, L, wi) |= p implies (θT , Nv, L, wi) |= q for any Nv defined as above,

which means that (θT , N, L, wi) |= p → ∀x · q(x) for any θT , N , L and

wi ∈ dom L by applying S3 and S4.

The universal validity of each logical axiom listed in Figure 2.15 is verified

as follows, assuming generic θ, N , L and si ∈ dom L for ∆:

2.9. Some General Logical Results 83

(A1-I) Suppose that (i) (θ,N, L, wi) |= p and (ii) it is not the case that (θ,

N , L, wi) |= q → p. From (ii) and S3, we infer that it is not true that

(θ,N, L, wi) |= q implies (θ,N, L, wi) |= p. So, we have (θ,N, L, wi) |= q

but (θ, N , L, wi) |= p does not hold, which contradicts (i). Therefore,

(θ,N, L, wi) |= p implies (θ,N, L, wi) |= q → p and we conclude that

(θ,N, L, wi) |= p→ (q → p) using S3;

(A4-GV) Suppose that (i) (θ,N, L, wi) |= G(p → q) and (ii) (θ,N, L, wi) |=

pVr→ qVr does not hold. From (ii) and S3, we have (θ,N, L, wi) |= pVr

but (θ,N, L, wi) |= qVr is not the case. According to S7, this means that

(iii) there is an wj ∈ dom L with L(wi) < L(wj) such that (θ,N, L, wj) |= p

and (θ,N, L, wk) |= r for any wk ∈ dom L where L(wi) < L(wk) < L(wj),

and (iv) for every wm ∈ dom L with L(wi) < L(wm), (θ,N, L, wm) |= q and

(θ,N, L, wn) |= r for any wn ∈ dom L where L(wi) < L(wn) < L(wm) are

not both true. In addition, the definition of satisfaction of Gp, (i) and S3

leads to (v) (θ,N, L, wj) |= p implies (θ,N, L, wj) |= q for any wj ∈ dom L

such that L(wi) ≤ L(wj). Applying the first half of (iii) in (v), we infer

that (θ,N, L, wj) |= q. For wm = wj, when we conjoin this partial result

to (iv), we obtain a contradiction. We conclude, from the negation of our

assumption and S3, that (θ,N, L, wi) |= G(p→ q)→ (pVr→ qVr);

(A6-V) Suppose that (i) (θ,N, L, wi) |= pVq. From (i) and S7, we infer that

(ii) there is wj ∈ dom L with L(wi) < L(wj) such that (θ,N, L, wj) |= p

and (θ,N, L, wk) |= q for any wk ∈ dom L where L(wi) < L(wk) < L(wj).

Hence, for each wm such that L(wk) < L(wm) < L(wj), we know from (ii)

that there is an wj ∈ dom L with L(wm) < L(wj) such that (θ,N, L, wj) |=

p and (θ,N, L, wn) |= q for any wn ∈ dom L where L(wm) < L(wn) <

L(wj). We conclude, using the definition of satisfaction of ∧ together with

S7 and S3, that (θ,N, L, wi) |= pVq → pV(q ∧ pVq);

(A8-V) Suppose that (i) (θ,N, L, wi) |= pVq ∧ rVs. From (i), the definition

of satisfaction of ∧ and S7, we infer that (ii) there is wj ∈ dom L with

L(wi) < L(wj) such that (θ,N, L, wj) |= p and (θ,N, L, wk) |= q for any

wk ∈ dom L where L(wi) < L(wk) < L(wj), and (iii) there is wl ∈ dom L

with L(wi) < L(wl) such that (θ,N, L, wl) |= r and (θ,N, L, wm) |= s for

any wm ∈ dom L where L(wi) < L(wm) < L(wl). Let wn = min (wj, wl).

It is easy to see from the second half of (ii) and (iii) that (θ,N, L, wo) |= q

and (θ,N, L, wo) |= r for any wo ∈ dom L where L(wi) < L(wo) < L(wn).

Now, if wj = wl, from the first half of (ii) and (iii), there is an wn such

that (θ,N, L, wn) |= p and (θ,N, L, wn) |= r. Alternatively, if wj < wl,

84 Chapter 2. Proof Theory and Software Development

from the first half of (ii) and the second half (iii), there is an wn such

that (θ,N, L, wn) |= p and (θ,N, L, wn) |= s. Otherwise, (θ,N, L, wn) |= q

and (θ,N, L, wn) |= s. Many applications of the definition of satisfaction

of ∧ and ∨ together with S7 allow us to conclude that (θ,N, L, wi) |=

pVq ∧ rVs→ (p ∧ r)V(q ∧ s) ∨ (p ∧ s)V(q ∧ s) ∨ (q ∧ r)V(q ∧ s);

(A10-G) Assume that (θ,N, L, wi) |= G(p→ Xp). The definitions of satisfac-

tion of G and X imply (i) for any wj ∈ dom L such that L(wi) ≤ L(wj),

(θ,N, L, wj) |= p implies (θ,N, L, wk) |= p where L(wk) = L(wj) + 1. Also

assume (ii) (θ,N, L, wi) |= p. By mathematical induction on i using (ii)

and (i), we infer that (θ,N, L, wj) |= p for any wj ∈ dom L such that

L(wj) ≤ L(wi). Therefore, using the definition of satisfaction of G and

S3, we conclude that (θ,N, L, wi) |= G(p→ Xp)→ (p→ Gp);

(A12-Xbeg) From S6, it is clear that (i) if (θ,N, L, wj) |= beg then L(wj) = 0.

Moreover, the definition of satisfaction of X says that (ii) (θ,N, L, wi) |=

X(beg) implies (θ,N, L, wj) |= beg such that L(wj) = L(wi) + 1. Con-

sidering that (ii) implies (i), we reach a contradiction and conclude in this

way that (θ,N, L, wi) |= ¬X(beg) due to S2;

(A13-A) According to S8, (θ,N, L, wi) |= A(p → q) implies (θ,N, Lj, (L
−1
j ◦

L)(wi)) |= p → q for any Lj which agrees with L on the state formulas

satisfied up to j. Using S3, we can infer that (θ,N, Lk, (L
−1
k ◦L)(wi)) |= p

implies (θ,N, Ll, (L
−1
l ◦L)(wi)) |= q, moving in this way the quantification

over behaviours to each instance of the satisfaction relation. Therefore,

based on S8 and S3, we infer (θ,N, L, wi) |= A(p→ q)→ (Ap→ Aq);

(A15-EA) Suppose that (i) (θ,N, L, wi) |= Ep and (ii) (θ,N, L, wi) |= AEp is

not true. From (i) and S8, we know that (iii) there is Lj which agrees

with L on the state formulas satisfied up to wi such that (θ,N, Lj, (L
−1
j ◦

L)(wi)) |= p. Moreover, (ii) and S8 allow us to say that it is not the case

that (iv) there is Lk which agrees with L on the state formulas satisfied

up to wi such that (θ,N, Lk, (L
−1
j ◦ L)(wi)) |= Ep. But (iv) and S8 show

that there is not an Lk such that for every Ll which agrees with Lk on

the formulas satisfied up to (L−1
k ◦ L)(wi) and (θ,N, Ll, (L

−1
l ◦ Lk)((L−1

k ◦

L)(wi))) |= p, which contradicts (iii) because (L−1
l ◦ Lk) ◦ (L−1

k ◦ L) =

L−1
l ◦ (Lk ◦L

−1
k)◦L = L−1

l ◦ I ◦L = L−1
l ◦L. Therefore, applying S3 to the

negation of our assumption,we conclude that (θ,N, L, wi) |= Ep→ AEp;

(A16-EV) Suppose that (i) (θ,N, L, wi) |= (Ep)Vq but (ii) (θ,N, L, wi) |=

E(pVq) is not the case. From (i), S7 and S8, (iii) there is wj ∈ dom L

2.9. Some General Logical Results 85

with L(wi) < L(wj) and Lk which agrees with L on the state formulas

satisfied up to wj such that (θ,N, Lk, (L
−1
k ◦ L)(wj)) |= p and for every

wk ∈ dom L where L(wi) < L(wk) < L(wj), (θ,N, L, wk) |= q. In addition,

from (ii), S8 and S7, we see that for every Ll which agrees with L on the

formulas satisfied up to wi and every wm ∈ dom Ll with Ll(wi) < Ll(wm),

(θ,N, Ll, (L
−1
l ◦ L)(wm)) |= p and (θ,N, Ll, (L

−1
l ◦ L)(wn)) |= q for any

wn ∈ dom Li where Ll(wi) < Ll(wn) < Li(wm) are not both true. These

hold for Ll = Lk and wm = wj, but in this case (iii) is contradicted.

Therefore, applying S3 to the negation of our assumption, we conclude

that (θ,N, L, wi) |= (Ep)Vq → E(pVq);

(A17-AU) Assume that (θ,N, L, wi) |= A(p → X(qUp)). By S8, S3 and the

definition of satisfaction of X and U, our assumption is easily shown to

be equivalent to (i) for every Li which agrees with L on the state formulas

satisfied up to wi, (θ,N, Lj, wj) |= p, where wk = (L−1
j ◦ L)(wi), implies

in the existence of an wl ∈ dom Lj with Lj(wk) + 1 ≤ Lj(wl) such that

(θ,N, Lj, wl) |= p and (θ,N, Lj, wm) |= q for any wm ∈ dom Li where

Lj(wk) ≤ Lj(wm) < Lj(wl). Assume in addition that (ii) (θ,N, L, wi) |= p.

Note that (i) particularly holds for each Ln which agrees with L on the

satisfied formulas up to and including wi. In these cases, we can apply (ii)

in (i) and infer that there is an w′
l ∈ dom Ln with Ln(wi) + 1 ≤ Ln(w′

l)

such that (θ,N, Ln, w
′
l) |= p, (θ,N, Ln, w

′
m) |= q for any w′

m ∈ dom Ln

where Ln(wi)+1 ≤ Ln(w′
m) < Ln(w′

k). The definition of satisfaction of U,

X and S3 show that (θ,N, L, wi) |= A(p→ X(qUp))→ (p→ XA(qUp));

(A20-∀) Assume for x 6∈ Free(p) that (i) (θ,N, L, wi) |= ∀x · p→ q, and (ii) it

is not the case that (θ,N, L, wi) |= p → ∀x · q. So, from (i), S4, S3, for

every v ∈ cod N and every assignment Nv for θ such that Nv(y) = N(y) if

y 6= x or Nv(y) = v otherwise, (θ,Nv, L, wi) |= p implies (θ,Nv, L, wi) |= q.

The consequent in this implication is also obtained from (θ,N, L, wi) |= p

in a structural induction argument, due to x 6∈ Free(p). On the other

hand, we have that (θ,N, L, wi) |= p but (θ,Nv, L, wi) |= q is not true for

some v, Nv, due to (ii), S4, S3. Therefore, we reach a contradiction and

conclude that (θ,N, L, wi) |= ∀x · (p→ q)→ (p→ ∀x · q);

(A22-EQ) Assume that (θ,N, L, wi) |= (t1 = t2). Consequently, for a given for-

mula p and any formula q, (θ,N, L, wi) |= p{q\t1} implies (θ,N, L, wi) |=

p{q\t2}. This is proved in detail by structural induction on the notions

of interpretation and satisfaction based on the definition of substitution

but is omitted here. Applying S3 twice, we conclude that (θ,N, L, wi) |=

86 Chapter 2. Proof Theory and Software Development

(t1 = t2)→ (p{q\t1} → p{q\t2});

(A23-∃V) Suppose that x 6∈ Free(q) and (i) (θ,N, L, wi) |= (∃x · p)Vq and (ii)

(θ,N, L, wi) |= ∃x · (p)Vq is not the case. From (i), S7 and S4, there is

wj ∈ dom L with L(wi) < L(wj), v ∈ cod N and assignment Nv with the

usual definition such that (θ,Nv, L, wj) |= p and for every wk ∈ dom L

where L(wi) < L(wk) < L(wj), (θ,N, L, wk) |= q. In addition, from (ii),

S4 and S7, for every v′ ∈ cod N , assignment Nv′ with the usual defini-

tion and every wl ∈ dom L with L(wi) < L(wl), (θ,Nv′ , L, wl) |= p and

(θ,Nv′ , L, wm) |= q for any wm ∈ dom L where L(wi) < L(wm) < L(wl)

are not both true. Note that this is equivalent to universally quantifying

Nv only in the first half of the sentence because x 6∈ Free(q). In particular

(iii) holds for Nv′ = Nv and wl = wj but in this case (ii) is contradicted.

Therefore, applying S3 to the negation of our assumption, we conclude

that (θ,N, L, wi) |= (∃x · p)Vq → ∃x · (pVq);

(A24-EQG) Assume that (θ,N, L, wj) |= (t1 = t2) for t1, t2 free from any

attribute symbol. In particular, for any wi ∈ dom L such that L(wj) ≤

L(wi), (θ,N, L, wi) |= (t1 = t2), due to S2, [[t1]]θ,N(wi) = [[t1]]θ,N(wj) and

similarly for t2. From the definition of satisfaction of G and S3, we con-

clude that (θ,N, L, wi) |= (t1 = t2)→ G(t1 = t2);

(A26-∀A) Assume that (θ,N, L, wi) |= ∀x ·A(p). According to S4, this means

that for every v ∈ cod N and every assignment Nv for θ such that Nv(y) =

N(y) if y 6= x or Nv(y) = v otherwise, (θ,Nv, L, wi) |= Ap. Now, from

S8, we infer that for any Lj which agrees with L on the state formulas

satisfied up to wi, (θ,Nv, Lj, (L
−1
j ◦ L)(wi)) |= p. Reversing the order of

these universal quantifications over Nv and Lj and applying S8, S4 and

S3 in this order, we conclude that (θ,N, L, wi) |= ∀x ·Ap→ A(∀x · p).

It remains to be shown that, if a set of sentences is related to a sentence by

an entailment of MSBTL, then they are also related by the corresponding se-

mantic consequence relation. That is, Ψ `∆ p implies Ψ |=∆ p. Not surprisingly,

we use our proof calculus to decompose this problem. Assume that Ψ `
∆
p. The

faithfulness condition in Definition 2.2.6 says that there is a derivation (D, p)

such that (D, p) ∈ Pr∆(Ψ, p). We proceed by structural induction:

BASE CASE: Characterised by derivations consisting of a single step, where

D = { }. According to 2.2.6, we only need to examine the following case:

p ∈ Ax(∆): Here, Ψ = { }. It is shown above that (θ,N, L, wi) |=∆ p for

2.9. Some General Logical Results 87

any θ, N , L and wi ∈ dom L whenever p ∈ Ax(∆). Hence, (θ,N ,L,

wi) |=∆
q for any q ∈ Ψ implies (θ,N, L, wi) |=∆

p, i.e., Ψ |=
∆
p;

Note that there is no need to examine other base cases. For, if p ∈ Ψ, Ψ 6=

{ } and then D 6= { } due to the constraint in the faithfulness condition.

If p 6∈ Ax(∆) ∪ Ψ and D = { }, (D, p) 6∈ Pr∆(Ψ, p) due to the minimality

of Pr∆(Ψ, p).

INDUCTIVE STEP: Characterised by derivations constructed out of many steps.

Since (D, p) ∈ Pr∆(Ψ, p) for some D 6= { }, this must be true because of

the third case in the definition, due to the minimality of Pr∆(Ψ, p). This

means that the following must be the case for some χ = {(δi, pi)|δi∪{pi} ⊆

G(∆)}: (i) D = {(di, pi) ∈ Pr∆(ψi ∪ δi, pi)|ψi ⊆ Ψ, ∃c ∈ χ · c = (δi, pi)}

and (ii) χ `∆ p. Since our proof calculus is given in Hilbert-style, all

the δis above have to be empty and can be ignored. By the inductive

hypothesis, from (i) we obtain ψi |=∆
pi and because of ∪ψi ⊆ Ψ and

the monotonicity of |=∆, we conclude (iii) Ψ |=∆ pi. We showed above

that each inference rule preserves validity. So, from (ii) we obtain (iv)

{pi|∃δi · (δi, pi) ∈ χ} |=∆
p. The transitivity of |=∆ allows us to link (iii),

(iv) and conclude that Ψ |=
∆
p.

The above holds for any derivation D such that (D, p) ∈ Pr∆(Ψ, p). Therefore,

because of the faithfulness condition, we can conclude that Ψ `MSBTL

∆
p implies

Ψ |=MSBTL

∆
p. (MSBTL Soundness)

Theorem 2.9.4 MSBTL is a logical system.

Proof: The signatures of MSBTL determine a category. The morphisms in

this category are structure preserving in the sense that the components of each

signature are mapped accordingly. The proof that SigMSBTL is a category is then

developed in a way analogous to Theorem 2.3.2.

The entailment system of MSBTL is defined by a proof calculus where

weakening and distributivity are logical. So, as shown in Section 2.3, the prop-

erties of reflexivity, monotonicity and transitivity of full entailment relations are

automatically obtained as well as strong structurality due to the format of our

axiom schemas. These ensure that MSBTL is a full entailment system.

We defined a model theory for MSBTL in Section 2.8. The collections

of such models define categories as claimed in Proposition 2.9.1. In turn, they

support an institution according to Lemma 2.9.2.

Entailment and institution obey a soundness condition according to Lemma

2.9.3, showing that MSBTL is a logic. Together with the proposed proof cal-

culus, MSBTL constitutes a logical system. (MSBTL Logical System)

88 Chapter 2. Proof Theory and Software Development

The following result is of a negative nature:

Theorem 2.9.5 MSBTL is not complete.

Proof: We prove this theorem in a way studied in detail by Abadi (1989), showing

that the sentences true in the standard model of (Peano) arithmetic can be

mapped into valid sentences of our temporal logic. Because arithmetical truth

is undecidable, there is a true sentence such that neither itself nor its negation

can be proved (Gödel 1931), this result is transfered to the temporal logic.

Consider a sentence p written in the language of arithmetic presented in

Figure 2.2. A (recursive) translation of p into our temporal logic can be defined

as ι(p) def
= p ∧

∧

{q|q ∈ Ax(TA)} where TA is the specification in Figure 2.1613.

Note that ι(p) is well-defined because the language of PA is included in that

of TA. Alternatively, we could have also chosen distinct symbol names and

connected these theories from distinct logics by a functor, in which case our

argument would be similar to the above.

We know that Ac = (N, 0U , sU , +U , ×U) is the standard model of the-

ory PA. On the other hand, according to Definition 2.8.2, any model of TA

must have the following structure: θ = (T , At, {N : N → α},{ }) for At =

{N , (0U , sU ,+U ,×U)} and T = (α0, α, ρ, Λ). The rigid constant and function

symbols specified through axioms (10.1) to (10.6) are interpreted as in the clas-

sical case because this set of axioms is the same of Figure 2.2. In addition, axiom

(10.7) guarantees that, in any behaviour L ∈ Λ, each element of N denoted by

the attribute symbol n is the N -image of some w ∈ dom L. Moreover, axiom

(10.8) guarantees that each w ∈ dom L will be mapped to a unique element of

N denoted by n. Therefore, N is a bijection between dom L and N . Because L

itself is a bijection between its domain and N, N is isomorphic to N. Picking α

as any infinite set produces a model for TA. We infer in this way that Ac |=PA p

iff At |=PA p iff θ |=TA ι(p), this last biconditional being justified by the definition

of ι and the fact that sort symbols are rigid.

Suppose that TA |= ι(p) implies TA ` ι(p) for every sentence p. Applying

the definition of our interpretation and the previous assumption to some p such

that Ac |= p, this would mean that we have a method to determine whether or

not a sentence is true in the standard model of arithmetic, but this contradicts

the incompleteness result developed by Gödel. We have shown that MSBTL is

incomplete. (MSBTL Incompleteness)

13The idea behind this specification is to assign at each time instant the flexible symbol n

to a unique natural number and to establish in this way a bijection between the denotation of
nat and N. Axiom 10.7 says that in the beginning of time n = 0 and, for each element x of
sort nat, it will be assigned to n eventually. Axiom 10.8 guarantees that the next value of n

is always the successor of its current value.

2.9. Some General Logical Results 89

Theory TA
sorts nat

constants 0 : nat

operations s : nat→ nat; + : nat× nat→ nat; ∗ : nat× nat→ nat

attributes n : nat

axioms x, y : nat14

¬(0 = s(x)) (10.1)
s(x) = s(y)→ x = y (10.2)
x + 0 = x (10.3)
x + s(y) = s(x + y) (10.4)
x ∗ 0 = 0 (10.5)
x ∗ s(y) = x ∗ y + x (10.6)
beg→ n = 0 ∧F(n = x) (10.7)
n = x→ X(n = s(x)) (10.8)

End

Figure 2.16: Temporal first-order theory of Peano arithmetic.

It is important to stress that the negative result above only holds for the

interpretation structures we have chosen here. It may be possible to find a

slightly different semantics for our logic so that it becomes complete. Andréka

et al. (1995) have applied Correspondence Theory as proposed by van Benthem

(1984) to map first-order temporal logic into classical logic, which is complete.

Thus this result may be transfered to the temporal framework. In our case,

it appears to be necessary to study in detail first if the propositional fragment

of the logic above is medium complete before proceeding with the study of the

first-order framework. Research in this direction is under way.

Concluding this section, we return to Proposition 2.7.4. We show that the

inference rule proposed therein is admissible in MSBTL. As a corollary, we

deduce that a logical system is obtained as a result of adding such rule to the

proof calculus of MSBTL.

Theorem 2.9.6 (Admissibility of INTRO) Assume that s ∈ Sort(∆), t ∈

Attr(∆) with type(t) = ε→ s and ≺ ∈ Act(∆) with type(≺) = s× s for a given

∆ in obj SigMSTBL. The following inference rule is admissible in MSBTL:

(INTRO) 1. IRR 4. APROG
2. STAB 5. FREE
3. TERM 6. LIM

∀x · (F(p[x])→ ∃y · F(y ≺ x ∧ p[y]))→ ∀x · ¬F(p[x])

14The variables x and y of sort nat appear implicitly quantified in the subsequent axioms.

90 Chapter 2. Proof Theory and Software Development

Proof: We assume given a signature ∆ such that s ∈ Sort(∆), t ∈ Attr(∆) with

type(t) = ε → s and ≺ ∈ Act(∆) with type(≺) = s × s. We write x ≺ y for

≺ (x, y). A classification Class(∆) for ∆ is also assumed to exist. We have

to show that, for any frame T = (α, α0, ρ, Λ), assuming that the premises of

INTRO are valid in T , the conclusion is also valid in T .

From (2), it is easy to see by applying the rule of temporal generalisation

R2-G that FG(∀x, y · x ≺ y → X(x ≺ y)) is the case. Conjoining this sentence

to (3) and relying on the distributivity of both FG and ∀ over conjunction,

we conclude that the symbol ≺ will eventually have a rigid interpretation in

any model θ based on T . We call the world from which this becomes true as

w0 ∈ dom L, for each L ∈ Λ.

From (4), it is not difficult to derive the following sentence:

G(∀x · t = x→ X(t = x ∨ t ≺ x))→ ∃x · FG(t = x) (2.9.4)

Suppose that for some model θ = (T , U , G, A), there is an infinitely decreasing

sequence of values from sU , S = 〈t0, t1, . . .〉, which are related by ≺U . We are

going to show based on S that θ cannot exist while satisfying the premises of

INTRO and (2.9.4) in particular.

Since our assumption guarantees that (1) is true in θ, we can infer that

(a) ti 6= ti+1, for every i ≥ 0. Moreover, from (5), for every world wi of a

fixed behaviour Li such that Li(w0) < Li(wi) and [[t]]θ,N(wi) = tLi(wi)−Li(w0)−1,

we know that there is another behaviour Li+1 with a past history up to si

equivalent to that of Li such that for wi+1 ∈ dom Li+1 with Li+1(si+1) = Li(wi)+

1, [[t]]θ,N(wi+1) = tLi+1(wi+1)−Li(w0)−1. This shows that the antecedent of (6) is

satisfied, so we also obtain based on the discreteness of S and L that (b) there

is an L ∈ Λ such that ∀si ∈ dom L · L(w0) < L(si)→ [[t]]θ,N(wi) = tL(wi)−L(w0)−1

for any assignment N for Class(∆). The antecedent of (2.9.4) is satisfied from

s1 onwards due to (b) and the rigid character of ≺U , but the consequent of this

implication is never obtained in L since the value of t keeps changing forever,

according to (a) and (b). In this way, our assumption of an infinitely decreasing

chain of values from sU related by ≺U generates a contradiction. Therefore,

there is no such an infinite sequence in any θ based on T .

Suppose that the antecedent of the conclusion is the case but the conse-

quent is not. From the latter, we know that (i) there is at least one element in

sU for any θ based on T containing U . From the former, we know that (ii) for

every ti ∈ sU , there is a ti+1 ∈ sU such that ti+1 ≺U ti. From (i) and (ii), we can

infer that there is an infinitely decreasing sequence of values from sU related by

≺U , but this is a contradiction. Hence, the conclusion of INTRO is valid in T .

We conclude that INTRO is admissible. (Admissibility of INTRO)

2.10. Summary and Related Work 91

Corolary 2.9.7 (Soundness of MSBTL+) MSBTL+ is sound.

Proof: Based on Lemma 2.9.3, we only need to show that INTRO preserves

validity. But this is precisely what Theorem 2.9.6 states. Therefore, MSBTL+

is sound. (MSBTL+ Soundness)

2.10 Summary and Related Work

We began this chapter arguing in favour of a proof-theoretic approach to rig-

orous software development. The many steps of the development process were

examined and the benefits of adopting this viewpoint were outlined. A number

of authors, such as Lehman et al. (1984), Turski and Maibaum (1987), Fiadeiro

et al. (1991) and de Queiroz (1990) appear to share a similar view, which is not

original to our work.

Afterwards, we presented definitions of many general logical structures

which appear to provide an adequate foundation for our proof-theoretic stud-

ies. In particular, we stressed the fundamental role of category theory as a

means of developing a software development theory relatively independent from

the adopted logical system as well as of facilitating the transposition of results

between related systems. General logics have been extensively studied in the lit-

erature by Fiadeiro and Sernadas (1988), Goguen and Burstall (1992), Meseguer

(1989), Fiadeiro and Maibaum (1993) and Cerioli and Meseguer (1997) among

others. On top of these studies we have introduced a minor but nevertheless

necessary assumption of syntactic vocabulary closure and a practical definition

of proof-calculus which seems to be a good alternative if compared to the com-

plicated categorical definition adopted by Meseguer (1989).

A series of entailment systems was subsequently defined culminating in

the introduction of a new many-sorted, first-order, branching time logical sys-

tem with equality, which appears to be adequate for designing extensible soft-

ware systems. We examined in detail the proof-theory of fragments of this

system based on their Hilbert-style definitions, providing realistic application

examples, and finally assessed other characteristics also related to their model-

theory, namely soundness and completeness. From the proof-theoretic side, it

is unfortunate to have only a Hilbert-style proof-calculus for our connectives

because more elegant proof-theoretic techniques such as cut elimination cannot

be effectively applied in this way. From the model-theoretic side, we discovered

that the adopted semantics does not yield a completeness result even though

this may be possible in a slightly changed framework. These limitations do not,

however, preclude the practical application of our logical system and in fact it

92 Chapter 2. Proof Theory and Software Development

is not yet clear if the solution of these problems may lead to the development of

a useful framework.

Perhaps the major contribution of this chapter is the proposed logical

system and the corresponding design principles developed to support the spec-

ification and verification of software systems. A substantial number of related

formalisms with their own principles has already appeared in the literature.

Chandy and Misra (1988) have developed UNITY, which is not strictly speak-

ing a temporal logical system but supports the design of concurrent systems.

UNITY lacks an elegant treatment of naming, which is resolved in terms of set

theoretic operations on the symbols of each presentation and does not support in

this way modularised design, since name clashes may occur in combining specifi-

cations which were developed in isolation. This is treated here by the categorical

constructions adopted following Fiadeiro and Maibaum (1992). Among tempo-

ral logical formalisms, TLA (Lamport 1994) and the linear time logic proposed

by Manna and Pnueli (1989) are close to ours, although they were not developed

with the same assumptions in mind and thus do not provide a proof-theoretic

account to each logical symbol, as the enabledness connective demonstrates. We

believe that such a kind of definition is fundamental in rigorous software devel-

opment and, in particular, when automating the process. Another related logic

is CTL∗ (Emerson 1990), which is a propositional branching time logic where

the branching connective has a slightly distinct meaning. We have provided both

a functor showing how to interpret CTL∗ theories into our formalism and the

rationale justifying the choice of a distinct modality meaning. Concerning the

design principles proposed here in the form of derived inference rules (apart from

the adopted categorical constructions), the anchored induction rule appears to

be quite a standard way of dealing with the verification of safety properties. The

lattice rule, on the other hand, normally lacks either methodological guidance

or an axiomatic basis upon which it can be applied. We are only aware of other

works herein both problems are treated just for the case of rigid relation symbols

in terms of non standard methods. We shall have the opportunity to exemplify

the application of our principles throughout the following chapters.

Chapter 3

Designing Open Reconfigurable
Systems

Distributed systems have provided one of the most pertinent frameworks for

organising separate independently produced software artifacts. Essentially, a

distributed system consists in a set of loosely interconnected software compo-

nents. For instance, a set of procedures put together to run as a sequential

program cannot be regarded as a distributed system unless there are methods

supporting the replacement of some of these components at run time and also

their execution in separate address spaces. Clearly then, the definition above is

not very informative and has to be complemented by a model which specifies

how components are connected to each other and interact among themselves.

Distributed system models come in different flavours. First of all, one needs

to consider whether interaction is to be supported by shared or isolated entities.

Shared memory allows distinct components to have read and perhaps write ac-

cess to a common storage. This is peculiar to the development of protocols for

ensuring distributed memory consistency (Raynal and Mizzymo 1993). Shared

control allows distinct components to observe the same event simultaneously.

A family of so-called coordination languages is based on this notion (Ciancarini

and Hankin 1996). Interaction based on sharing is necessarily synchronous. On

the other hand, message passing is not necessarily so. Messages are transmitted

in asynchronous mode if and only if it is not possible to place internal bounds

on communication delays nor on the relative speed of each component. Other-

wise, the mode of interaction is considered to be synchronous. In models based

on message passing, wherein interaction is directed, there is also the issue of

deciding the number of participants allowed in each interaction. If there must

be only one recipient for each message, we say point-to-point communication is

supported. At the opposite extreme, broadcasting is characterised by the fact

that each message is always distributed to all the components of the system.

93

94 Chapter 3. Designing Open Reconfigurable Systems

Distributed systems based on these models may support extensibility in an

effective manner if they are also open and reconfigurable. A distributed system

is said to be reconfigurable if and only if the interconnection topology of its com-

ponents, or more simply its configuration, may vary with time. Moreover, the

system is said to be open whenever it may eventually interact with an environ-

ment over which little if any control is retained. Because few assumptions can

be made about the environment and the dynamic configuration of the system,

it becomes easier to support changes which lead to extended functionality or

structure. As we argued in the introduction, since openness and reconfigurabil-

ity seem to enforce extensibility, it appears to be reasonable to anticipate their

use and introduce explicit support to these notions at more abstract levels of

the development process such as when performing software design.

Designing open reconfigurable distributed systems in a rigorous way does

not appear to be an easy task. For example, Abadi and Lamport (1994) adopted

the temporal logic TLA in a rely-guarantee style to deal with openness, but left

reconfigurability completely untreated. On the other hand, a whole field of study

was uncovered when Milner et al. (1992) proposed a synchronous value passing

process calculus in which names are primitive and can be passed around to allow

the respective processes to reconfigure. However, they have preferred to leave

the notion of openness untouched. Both notions were addressed by Agha et al.

(1994) in terms of the so-called actor model, which is based on asynchronous

message passing, but at a level of abstraction very close to implementation and

without concern for rigorous verification of properties.

A model of distributed systems may be expressively rich enough to capture

openness, reconfigurability and other notions that support extensibility. We

believe this to be the case of the actor model. This is why we study in this

chapter how to provide explicit support for this model using a proof calculus that

extends our work of Chapter 2. Manna and Pnueli (1983) have also applied, at

lower levels of abstraction, this idea of particularising a temporal logical system.

In particular, we follow the terminology proposed by Fiadeiro et al. (1991) and

claim to give a temporal proof-theoretic semantics for the interaction primitives

of the actor model. We provide methods and principles to support specifying,

composing and reasoning about actor communities. We also show that other

message passing modes of interaction and other notions supporting extensibility

may be treated in terms of actors. This open reconfigurable systems design

initiative based on actors initiated by Duarte (1997b) is indeed possible due to

a result of Koymans (1987), who first showed that by adopting purpose built

temporal logics one can treat a variety of message passing modes of interaction.

3.1. Issues in the Design of a Proof Theory for the Actor Model 95

We proceed by introducing the actor model and discussing some relevant

issues in the design of the respective temporal proof-calculus. Subsequently,

we describe our approach to the specification and verification of actor systems,

illustrating the technicalities involved by means of a simple example. A summary

and a comparison with related work appear in the last section.

3.1 Issues in the Design of a Proof Theory for

the Actor Model

Since the pioneering work of Hewitt and Baker (1977) on the foundations of con-

currency, a promising model of open distributed systems has been developed,

initially by Clinger (1981) and lately by Agha (1986), Talcott (1996b) and oth-

ers. The so-called actor model regards distributed systems as communities of

objects with encapsulated state which may only be changed by performing local

computations. Message passing between actors is buffered, point-to-point and

asynchronous, based on a localised naming scheme. As a result of processing

messages, new concurrent actors can be created, local computations can occur

and actor names can be communicated.

Considering the characteristics above, it seems to be a natural research

direction to abstract from previous work in which the model was realised in

diverse programming languages and semantic domains in order to examine the

step-by-step development, and here in particular the design, of open reconfig-

urable systems in terms of actor communities. Agha (1986) identified the basic

primitives required to support the model and outlined a generic operational se-

mantics for actor languages. In (Agha et al. 1997), the operational semantics

of a complete language was developed along with criteria for dynamically com-

posing interacting actor components. Alternative semantic domains defined in

terms of the inference rules of rewriting and linear logic were studied by Talcott

(1996a), Darlington and Guo (1995), respectively. All these works have focused

on describing in an operational manner the behaviour of actor systems.

In Chapter 2, we defined a logical system which appears to be expressive

enough to support the design of actor systems. State and change, for instance,

can be represented by sets of attribute and action symbols. Moreover, creation

and naming may be dealt with in the usual way studied by Ehrich et al. (1988),

in terms of the first-order features of the logic. This is to say, a distinguished

sort symbol denoting object names is considered to be part of every signature

and all the attribute and action symbols are regarded to be parameterised by

the respective sort, extending the originally provided specifications. To avoid

96 Chapter 3. Designing Open Reconfigurable Systems

conflicts between the creation of new actors and the satisfiability of Barcan for-

mulas, every actor specification may carry an auxiliary existential boolean at-

tribute symbol. According to this approach, objects that have not been created,

i.e., their respective attribute is equal to false, do not play any role, paraphrasing

America and de Boer (1996).

Concerning the buffered, point-to-point, asynchronous mode of interaction

between actors, a faithful approximation can be defined by introducing another

set of logical symbols in each specification and providing an extended axioma-

tisation which depends on these new symbols. In particular, because the actor

model requires the delivery and consumption of a message to be guaranteed

whenever it becomes possible often enough for the target actor to deliver such a

functionality, fairness requirements which demand specifying when these events

may occur as it is impossible to determine a priori how the environment will

evolve, the full expressiveness of our branching time logic has to be used.

Considering this rationale, actor specifications should look like Figure 3.1.

Therein, buffer cells are specified which dynamically allocate a new cell for each

stored integer. Attribute symbols represent the actor state whereas messages

and local computations are represented by action symbols. The connectives E,

X, F are as previously defined. In Axiom (11.9), for instance, X is used to state

that, if a message put(v) is consumed by the last cell of the buffer (lst = T), in

the next instant another cell containing the value v will be created and linked to

the current one (new(item, n, v) ∧ link(n)). Subsequently, the buffer will have

reconfigured accordingly. On the other hand, ← is a new definable temporal

connective which is required in stating that a property holds only if preceded by

the occurrence of another property. Axiom (11.13) determines that neither of

the two events above happen unless the appropriate cell consumes a put message

first. We shall continue to explain this example in the following sections.

3.2 An Axiomatisation of the Actor Model

3.2.1 Representing Actors

We use theory signatures to define the symbols that can be used in writing each

specification. Specifications, in turn, consist of finite sets of axioms defining

theory presentations. Both notions are the same as explained in Chapter 2,

but here we particularise even further the structure of MSBTL signatures to

cater for the peculiarities of the actor model. We also use a shorthand notation

which will facilitate the exposition of the formalism. Theory signatures for actor

specification are defined as follows:

3.2. An Axiomatisation of the Actor Model 97

Actor BufferCell
data types addr, bool, int (T, F : bool)
attributes val : int; nxt : addr; void, lst, up : bool

actions nil, item(int) : local + extrn birth;
go, cons, link(addr) : local computation;
put(int), get(addr) : local + extrn message;
reply(int) : extrn message

axioms k, n : addr; v : int; x, y : bool

nil→ void = T ∧ lst = T ∧ up = F (11.1)
item(v)→ val = v ∧ void = F ∧ lst = T ∧ up = F (11.2)
nil ∨ item(v)→ X(go) (11.3)
go→ X(up = T) (11.4)
go ∧ val = v∧void = x∧nxt = n∧lst = y → X(val = v∧void = x∧nxt = n∧lst = y) (11.5)
cons ∧ nxt = n ∧ lst = x ∧ up = y → X(void = T ∧ nxt = n ∧ lst = x ∧ up = y) (11.6)
link(n)→ X(nxt = n ∧ lst = F) (11.7)
link(n) ∧ val = v ∧ void = x ∧ up = y → X(val = v ∧ void = x ∧ up = y) (11.8)
put(v) ∧ lst = T→ X(∃n · new(item, n, v) ∧ link(n)) (11.9)
put(v) ∧ lst = F ∧ nxt = n→ X(send put, n, v ()) (11.10)
get(n) ∧ void = F ∧ val = v → X(send reply, n, v (∧)cons) (11.11)
get(n) ∧ void = T ∧ lst = F ∧ nxt = k → X(send get, k, n ()) (11.12)
∃n · new(item, n, v) ∨ link(n)← put(v) ∧ lst = T (11.13)
send reply, n, v (∨)cons← get(n) ∧ val = v ∧ void = F (11.14)
send put, k, v (←)put(v) ∧ nxt = k ∧ lst = F (11.15)
send get, k, n (←)get(n) ∧ nxt = k ∧ void = T ∧ lst = F (11.16)
up = T→ FE(deliv (put, v)) ∧ FE(put(v)) ∧ FE(deliv (get, n)) ∧ FE(get(n)) (11.17)

End

Figure 3.1: Specification of integer buffer cells.

Definition 3.2.1 (Actor Signature) An actor signature ∆ = (Σ, A, Γ) is a

triple of disjoint and finite families of symbols such that:

• Σ = (S, Ω) is a universe signature, i.e., S is a set of rigid sort symbols and

Ω is an S∗
fin
×S-indexed family of rigid function symbols1. We also require

that addr ∈ S, representing the sort of mail addresses (or actor names);

• A (or Al) is an S∗
fin
× S-indexed family of flexible attribute symbols;

• Γ = (Γe,Γl,Γc) is a triple of S∗
fin

-indexed families of action symbols such

that (Γe ∪ Γl) ∩ Γc = { }. Γc is a set of local computation symbols. The

elements of Γe and Γl represent, respectively, events to be requested from

the environment and provided locally2. Each of these two sets contains

distinguished sub-sets of message and birth symbols, e.g. Γl−Γlb and Γlb .

We write ε → s-indexed families of signature symbols as if s were their single

index. Given a set or sequence of such symbols X, we write as X〈s1,...,sn〉,s the sub-

1We usually consider that the enumerated constants are all different from each other.
2Because actors may self-address requests, Γe and Γl should not be disjoint in general.

98 Chapter 3. Designing Open Reconfigurable Systems

set or sub-sequence of X containing symbols of type 〈s1, . . . , sn〉 → s only. To

make reference to specific sets of signature symbols, we operate with subscripts

to denote operations on sub-sets. For instance, Γeb
∩ Γlb is written as Γeb∩lb .

In the example specification of Figure 3.1, addr, bool and int are the sort

symbols that constitute, together with their implicitly specified constants and

operations, the universe signature Σ. Clearly, the sort of mail addresses addr has

to be part of every signature. Otherwise, some specified actors would be useless

without the ability of exchanging messages or creating new actors. Still in the

example, val (current value), nxt (next cell address), void (consumed content),

lst (last cell) and up (live cell) are the attribute symbols in A. In the particular

terminology of the actor model, they are called acquaintances, which may be

determined at creation time or in performing local computations.

The structure of the set of action symbols differs from those of Sernadas

et al. (1995), Fiadeiro and Maibaum (1992), who advocate similar logics, and

also from our definitions in the previous chapter. Each actor specification may

guarantee the occurrence of externally required events and may determine that

the occurrence of some events is required from the environment. Actor specifica-

tions may also define local computations. Because of these distinctions, the set of

action symbols is divided into Γl, Γe and Γc, respectively. The first two of these

are partitioned into sub-sets of symbols to represent messages and births, Γe−eb

and Γeb
for instance. Actors interact via asynchronously transmitted messages,

denoted by the symbols in Γ(l−lb)∪(e−eb), which are used in many different ways.

For instance, put(v) represents the consumption of a message put carrying v as

its contents and send put, n, v () specifies that the same message and contents

are transmitted to an object whose mail address is n. The distinguished uses

of signature symbols also apply to the creation of actors, through the primitive

new and the subsequent occurrence of birth actions in Γlb∪eb
. All these events

can only occur carrying a finite number of acquaintances and are exemplified by

the action symbols in Figure 3.1.

As is usual in a proof-theoretic approach, cf. Fiadeiro et al. (1991),

Wieringa et al. (1995), we extend signatures with some new logical symbols.

The situation here resembles the use of hidden symbols in algebraic specifica-

tions (Ehrig and Mahr 1985). Therein, the specifier may need to use an ex-

ternally unavailable language to specify complex data types. Herein, we use a

simpler language to specify complex patterns of behaviour presented by every

actor, defined in terms of a more complex language. This extended language will

be used to provide an implicit proof-theoretic semantics for the actor primitives

and that is why it should not be required from the specifier of each signature.

3.2. An Axiomatisation of the Actor Model 99

Definition 3.2.2 (Extended Actor Signature) Given an actor signature ∆

= (Σ, Al, Γ) such that Σ = (S, Ω) and Γ = (Γe, Γl, Γc), the triple λ∆ = (λΣ,

λA, λΓ) is said to be the extended signature of ∆ if and only if:

1. λΣ = (S ∪ {bool}, Ω ∪ {Tbool,Fbool,NOTbool→bool});

2. λA = (Al, Ai, As, Ad), such that (i) for each c ∈ Γlb of sort 〈s1, . . . , sn〉

there is an initc ∈ Ai〈s1,...,sn〉,bool
; (ii) for each c ∈ Γ(e−eb)∪(l−lb) of sort

〈s1, . . . , sn〉 there is a sentc ∈ As〈s1,...,sn〉,bool
, and (iii) for each c ∈ Γl−lb of

sort 〈s1, . . . , sn〉 there is a delivdc ∈ Ad〈s1,...,sn〉,bool
. All the symbols in the

respective components of λA are due to (i), (ii) and (iii);

3. λΓ = (Γe, Γout, Γl, Γin, Γc, Γrcv), where (i) for each c ∈ Γe of sort

〈s1, . . . , sn〉 there is an outc ∈ Γout〈addr,addr,s1,...,sn〉
; (ii) for each c ∈ Γl of sort

〈s1, . . . , sn〉 there is an inc ∈ Γin〈addr,addr,s1,...,sn〉
, and (iii) for each c ∈ Γl−lb of

sort 〈s1, . . . , sn〉 there is a rcvc ∈ Γrcv〈s1,...,sn〉
such that Γ(in∪out)∩rcv = { }

and that inc = outc if and only if c ∈ Γe∩l. All the symbols in the respective

components of λΓ are due to (i), (ii) and (iii).

That is to say, the original universe signature is extended with a boolean sort

symbol, new attribute symbols are provided to deal with the existence of actors

and buffering of messages, and new action symbols are introduced to handle

creation and interaction. Hereafter, we will not make any distinction between

extended signatures and actor signatures.

A central feature of actors is interaction. Here, it is simulated using the

action symbols outc and ind which happen simultaneously for any c ∈ Γe and

d ∈ Γ′
l belonging to the actor communities, populations of objects complying

with the same specification, requesting and providing the event respectively.

These symbols correspond either to the dispatch of a message or the request

of an actor birth. The occurrence of these logical actions plays the role of the

interaction steps of Talcott (1996b). For an interaction represented by c be-

tween actors of the same community, hence required and provided locally and

member of Γe∩l, the occurrence of the new actions above is obliged to be syn-

chronous by the second constraint in (3.iii) of Definition 3.2.2. Otherwise, this

synchronisation must be supported by the existence of a morphism identifying

these symbols as shared by the distinct signatures, as discussed in Section 3.4.

Asynchrony in message transmission is guaranteed by forcing outc|ind to happen

strictly before rcvd, which in turn has to occur strictly before d itself. The two

last symbols correspond to the occurrence of the delivery and consumption of the

message, respectively. Finally, (double) buffering is captured by the attribute

100 Chapter 3. Designing Open Reconfigurable Systems

delivdd (sentc) becoming true for some values whenever these values are deliv-

ered (sent) in a message. Of course, these new symbols do not explicitly appear

in specifications but their behavioural constraints will have to be captured by

our axiomatisation. Also, according to the definition above, ill formed messages

are not allowed — as action symbols, messages always have a locally correct

representation at the sender — and dispatched messages which do not belong

to the language available to the target actor are never delivered.

Following America and de Boer (1996), we consider that in a given point

in time it is only possible to deal with the existing actors at that moment.

Accordingly, an object will have some initc attribute equalised to T(RUE) for

some sequence of terms ~vc only if the occurrence of an action inc(~vc), c ∈ Γlb ,

gives rise to its birth. The structure of communities of actors which comply

with the same specification, each of which having a distinguished mail address,

is defined below:

Definition 3.2.3 (Actor Community Signature) Given a signature ∆ =

(Σ, A, Γ), a community signature ∆P is obtained by “parameterising” ∆ with

sort P. That is, ΣP def
= (S ∪ {P}, Ω); AP is obtained from A by adding the

parameter sort P to each of its attribute symbols; and ΓP is obtained from Γ by

adding the parameter sort P to each action symbol in Γe, Γl, Γc and Γrcv. The

other symbols of ∆ remain the same in ∆P.

Clearly, the parameter sort P of every community should be addr. Indeed,

as identified by Talcott (1996b), actor semantics should be parameterised by

sets of actor addresses. Due to our definition, a new argument is added to

the appropriate signature symbols and its instances will be actor names. In this

way, the basic operations on object references identified by America and de Boer

(1996), equality test and dereferencing, are supported. However, signatures alone

do not support a modular design discipline, obliging the entire structure of

complex systems to be represented as single entities. The required means of

composition shall be studied in Section 3.4.

Due to the parameterisation of signatures by addr, we are allowed to adopt

the usual object-based notation of prefixing the name of an object to the logical

expressions pertaining to it. In this way, we can move parameters outwards and

write p(n, ~vp) as n.p(~vp) for any attribute and action symbol p. This lifts in a

compositional manner to all the expressions in each language. Adopting this

convention, for each pair of formulas p and q, say, we have n.p∧ n.q ≡ n.(p∧ q).

Sentences of this kind are called global as opposed to the local ones which have

the focus actor striped out. Assuming that n, ni ∈ Term(∆)addr, the usual actor

primitives defined below are also admissible in specifications and proofs:

3.2. An Axiomatisation of the Actor Model 101

For in formula reads represents
— — n.init initialisation

∨

{∃~vc · c(n, ~vc)|c ∈ Γlb}

~vc Term(∆) n1.new(c, n2, ~vc) actor creation
outc(n1, n2, ~vc), if c ∈ Γeb

inc(n1, n2, ~vc), if c ∈ Γlb

~vc Term(∆) n1.send c, n2, ~vc () message dispatch
outc(n1, n2, ~vc), if c ∈ Γe−eb

inc(n1, n2, ~vc), if c ∈ Γl−lb

~vc Term(∆) n.deliv (c, ~vc) message delivery rcvc(n, ~vc), if c ∈ Γl−lb

To deal with our examples in a more effective way, we also adopt the following

definitions of not so standard temporal connectives of strict precedence:

(D14-IP) q1
i
←pq2 def

= p→ (¬q1)W(q2 ∧ ¬q1);

(D15-P) q1 ←p q2 def
= q1

i
←pq2 ∧ (q1 → X((¬q1)W(q2 ∧ ¬q1))).

D14 defines an initial precedence connective and D15 an iterated precedence

connective. Both connectives are anchored; precedence is required only after

the indexing formula occurs. In specifications, indexes are instantiated with

beg and omitted. These connectives are needed to express causality. In our

example, get and reply are causally connected, meaning that these events do not

happen concurrently and each occurrence of get causes a subsequent dispatch

of reply, which does not happen otherwise (11.11, 11.14). This shows that their

occurrence is alternating. Note that neither of the connectives above is definable

in terms of X, F and G only, justifying our choice of a temporal logic based on

a strict strong until connective.

There exists just another actor primitive not treated so far: become,

which prescribes that an actor will behave in its subsequent computation ac-

cording to a distinct specification determined a priori. In fact, local computa-

tions in Γc like cons (consumption) of our example together with a selective use

of attribute symbols simulate this in an awkward manner. Indeed, the whole

BufferCell specification could have been split so that each cell could become

both a linked and an empty one according to the processing of previously re-

ceived messages3. It would be easy to present become as another definition

by introducing death actions in signatures and by defining the primitive as the

death of an actor and its subsequent resurrection with a distinct behaviour,

keeping the same mail address in this process. However, we have reasons to

avoid treating this here: in the first place, in order to simplify our presentation,

and, secondly, because the primitive, with the meaning described above, does

not increase the expressive power of the model, as identified by Agha (1986).

Concerning the interpretation of signature symbols, the same assumptions

made in the previous chapter are applicable here. Note in particular that events

3Note that, since |Γlb | ∈ [0, ω0[, we allow actors to have “multiple constructors”.

102 Chapter 3. Designing Open Reconfigurable Systems

may happen concurrently if this is allowed by specification axioms and thus

action symbols are a syntactic representation of the events of Hewitt and Baker

(1977), which may proceed concurrently if unrelated. Specifications are defined

in terms of parameterised signatures in the usual way. Axioms are only satisfied

by sets of infinite discrete sequences of worlds representing the behaviour of an

actor community and this captures all the possible evolutions of an open system

rather than just the possibly terminating behaviour of some particular objects.

3.2.2 Axiomatising Actor Behaviours

In this section, we develop a proof calculus for the actor model which particu-

larises the logical system of the previous chapter by considering an additional

set of logical axioms and inference rules. The associated notion of model is

taken from the class of structures defined in Section 2.8 which also satisfy our

extended axiomatisation. Thus, we can focus on the actor model here.

We develop an axiomatisation of a consequence relation `∆, which is in-

dexed by a signature ∆ because this relation is defined in a way that strictly

depends on the symbols of the given signature. In other words, ` is a weakly

structural consequence relation. We assume that ∆ = (Σ, A, Γ) is given.

We also use the variable n for actor names, decorated with indexes whenever

necessary. Moreover, for a given c ∈ Γ, type(c) = 〈s1, . . . , sn〉, n ∈ ~vc ab-

breviates
∨

{n = vci
|type(vci

) = addr; 1 ≤ i ≤ n} and ~vc = ~uc abbreviates
∧

{vci
= uci

|1 ≤ i ≤ n}. Free variables in axioms are considered to be implicitly

universally quantified and the following notation is used to express the invari-

ance of an expression; that a required actor name has become known due to the

delivery of a message, the birth of the actor or the creation of new objects; that

a property does not occur until a specific actor name becomes known; and a

strong fairness requirement over the occurrence of a particular formula:

For in formula represents
t T erm(∆) Inv(t) ∀k · t = k → X(t = k)
p G(∆) Inv(p) (p ∧Xp) ∨ (¬p ∧X(¬p))

n Term(∆)addr Acq(n)

∨

{∃~vd · deliv (d, ~vd) ∧ n ∈ ~vd|d ∈ Γl−lb}
∨

{∃~vd · d(~vd) ∧ n ∈ ~vd|d ∈ Γlb}
∨

{∃~vd · new(d, n, ~vd)|d ∈ Γeb
}

n, p Term(∆)addr,G(∆) Wait(n, p) (¬p)W(init) ∧ (¬p)W(Acq(n))
p G(∆) Fair(p) F(p ∨GA(¬p))

As identified by Hewitt and Baker (1977), locality is an essential character-

istic of the actor model. This is also a crucial assumption in object-based logics

to support modular specification and reasoning (Fiadeiro and Maibaum 1992,

Sernadas et al. 1995). Generally speaking, locality requires that state changes of

3.2. An Axiomatisation of the Actor Model 103

an actor be effected only by the events related to the object itself. This means in

particular that each actor has encapsulated state. We choose to capture locality

through the axioms below:

(L1)
∨

c∈Γc

∃~vc · n.c(~vc) ∨
∧

f∈Al

∀ ~vf · n.Inv(f(~vf))

(L2)
∧

c∈Γl
b

∀~vc · ∃n1 · n1.new(c, n2, ~vc) ∨ n2.Inv(initc(~vc))

(L3)
∧

c∈Γl−l
b

∀~vc · ∃n2 · n2.send c, n1, ~vc (∨)n1.deliv (c, ~vc) ∨ n1.Inv(sentc(~vc))

(L4)
∧

c∈Γl−l
b

∀~vc · n1.deliv (c, ~vc) ∨ n1.c(~vc) ∨ n1.Inv(delivdc(~vc))

The first axiom says that either an actor performs a local computation or its

extra-logical attributes all remain invariant. In the BufferCell example, this

means that either cons, link or go occur or else the values of val, nxt, void,

lst and up do not change. According to the second axiom, either an object is

created with a certain name or the existence of an actor with such a name is

not disturbed. The other two logical axioms are to guarantee that buffering

attributes vary only when message passing takes place.

The following axioms constrain the occurrence of events:

(O1)
∧

c∈Γe−e
b

∀~vc · beg→ G(¬n1.init) ∨
∧

n∈n2: ~vc

n1.Wait(n, send c, n2, ~vc ())

(O2)
∧

c∈Γl−l
b

∀~vc · beg→ (¬n.deliv (c, ~vc))W(n.init)

(O3)
∧

c∈Γ(l−l
b
)∪c

∀~vc · beg→ (¬n.c(~vc))W(n.init)

(O4)
∧

c∈Γe
b

∀~vc · beg→ G(¬n1.init) ∨
∧

n∈~vc

n1.Wait(n, ∃n2 · new(c, n2, ~vc))

(O5a)
∧

b,c,∈Γl
b

d∈Γl−lc

∀~vc, ~vd · ∃n1, ~vb · n1.new(b, n2, ~vb)→n2.initd(~vc)=n2.sentd(~vd)=n2.delivdd(~vd)=F

(O5b)
∧

c∈Γl
b

∀~vc · beg→ (n.c(~vc)↔ n.initc(~vc) = T)

(O6a)
∧

c∈Γl
b

∃n1, n2, ~vc ·E(n1.new(c, n2, ~vc))

(O6b)
∧

c∈Γl
b

G(∃! n2 · ∃n1, ~vc · n1.new(c, n2, ~vc))→ ∀n2 · F(∃n1, ~vc · n1.new(c, n2, ~vc))

(O7a)
∧

c∈Γl
b

∀~vc · ∃n1 · n1.new(c, n2, ~vc)→ XF(n2.c(~vc))

(O7b)
∧

c∈Γl
b

∀~vc · beg→ X((¬n2.c(~vc))W(¬n2.c(~vc) ∧ ∃n1 · n1.new(c, n2, ~vc)))

(O8)
∧

c,d∈Γl
b

d6=c

∀~vc·n1.new(c, n2, ~vc)→/∃n3, ~uc, ~vd·n3 : ~uc 6=n1 : ~vc∧n3.new(c, n2, ~uc)∨n3.new(d, n2, ~vd)

(O9)
∧

c∈Γl−l
b

∀~vc · n.deliv (c, ~vc)→ n.sentc(~vc) = T

(O10)
∧

c,d∈Γl−l
b

d6=c

∀~vc · n.deliv (c, ~vc)→ /∃ ~uc, ~vd · ~uc 6= ~vc ∧ n.deliv (c, ~uc) ∨ n.deliv (d, ~vd)

104 Chapter 3. Designing Open Reconfigurable Systems

(O11)
∧

c∈Γl−l
b

∀~vc · n.c(~vc)→ n.delivdc(~vc) = T

(O12)
∧

c,d∈Γ(l−l
b
)∪c

c6=d

∀~vc · n.c(~vc)→ /∃ ~uc, ~vd · ~uc 6= ~vc ∧ n.c(~uc) ∨ n.d(~vd)

O1-4 state that, before the birth of an actor, not only the dispatch, deliv-

ery and consumption of messages but also local computations and requests for

creation are forbidden. Note that O1 and O4 are more liberal than the other

axioms if the respective actor is never created but are more restrictive other-

wise by requiring that each actor name becomes known due to the delivery of

a message, the birth of the actor or the creation of another object before the

name can be used in the respective task. These restrictions are to prevent the

use of arbitrary names and modes of interaction such as broadcasting which are

distinct from point-to-point message passing. On the other hand, the same ax-

ioms are permissive concerning unborn actors because we are capturing an open

mode of interaction, which cannot be totally constrained by the local semantics.

An actor complying with some community specification, say, does not have to

be created in this context, but may need to dispatch some messages which are

mentioned in the specification. Therefore, the occurrence of these events should

not be logically forbidden. The situation above is dual to that described by

Fiadeiro and Maibaum (1997) wherein read-only attributes are adopted as a

means of capturing an open synchronous mode of interaction. Such attributes

cannot be constrained locally, but only at a global level where the respective

components are put together and interfere with the behaviour of one another.

The subsequent set of logical axioms above relates the creation of new

actors, the occurrence of birth actions and the existence of other objects. O5a

and the other axioms imply that an actor can only be created once and also

that messages are not sent or delivered to the object before its birth. Moreover,

according to O5b, the actor birth occurs in the beginning of time if the object

always exists. O6a says that it is always possible for some actor to create a

new object and O6b states that all the actor names will be used if exactly one

object is created at each instant. It is important to mention that, because of

the specific characteristics of the adopted time flows, the former axiom implies

that the set of actor names is infinite while the latter implies that the same set

is countable. O7a and O7b state that the occurrence of births and requests for

creation are always causally connected after the initial moment.

We have also proposed a set of axioms stating mutual exclusion. Most

of these properties are particular to the actor model, whereas a few are due to

decisions in the design of our formalism. O8 specifies that actors with the same

name cannot be concurrently created; O9 says that messages can be delivered

3.2. An Axiomatisation of the Actor Model 105

only if they were previously sent; O10 determines that only one message can be

delivered to an actor at each instant; O11 says that messages can be consumed

only if they were previously delivered; and finally, according to O12, message

consumption and local computations of an actor are totally ordered, meaning

that two such events cannot occur in parallel. Concerning this last axiom, we

could have allowed instead actors with full internal concurrency while ensuring

attribute consistency through additional axioms. We prefer the simpler formula-

tion here to facilitate specification and reasoning. Note that the specified actors

can always present some internal concurrency anyway: they can, for instance,

create many other objects and send several messages at the same time.

Many logical attributes are introduced in the extension of actor signatures.

The modification of their values according to the occurrence of the respective

actions is defined by the following valuation axioms:

(V1)
∧

c∈Γl
b

∀~vc · ∃n1 · n1.new(c, n2, ~vc)→ X(n2.initc(~vc) = T)

(V2)
∧

c∈Γl−l
b

∀~vc · ∃n1 · n1.send c, n2, ~vc (→)X(n2.sentc(~vc) = T)

(V3)
∧

c∈Γl−l
b

∀~vc · n.deliv (c, ~vc)→ X(n.sentc(~vc) = F ∧ n.delivdc(~vc) = T)

(V4)
∧

c∈Γl−l
b

∀~vc · n.c(~vc)→ X(n.delivdc(~vc) = F)

According to V1, if the creation of an actor has been requested, there will exist

a new actor in the next instant. Moreover, axioms V2 and V3 say that if a

message is dispatched, it will be buffered for output, and likewise the message

will be removed from the output and transferred to the input buffer whenever it

is delivered. Furthermore, each processed message will be subsequently removed

from the input buffer as stated in axiom V4. Note that the delay in buffering

messages, in the next instant only, rules out the existence of Zeno actors, which

could receive, compute and reply infinitely fast.

Finally, fairness axioms are required to guarantee a correct collective be-

haviour. Without fairness, it could be the case that a message is not delivered

even if the target actor is always willing to receive it, e.g., because of a trans-

mission failure, and likewise that received messages are never consumed.

(F1)
∧

c∈Γl−l
b

∀~vc · n.delivdc(~vc) = T ∧ E(n.c(~vc))→ n.Fair(c(~vc))

(F2)
∧

c∈Γl−l
b

∀~vc · n.sentc(~vc) = T ∧ E(n.deliv (c, ~vc))→ n.Fair(deliv (c, ~vc))

The first axiom says that, if the processing of a single message is obliged, because

the message was delivered and has been locally buffered, and it is also enabled,

i.e., possible, the message will be processed or else the actor will become al-

ways disabled for processing, unable to consume the pending message. Mutatis

106 Chapter 3. Designing Open Reconfigurable Systems

mutandis, this is what the second axiom says for message delivery. These ax-

ioms capture assumptions that can be classified in between those of perfect and

initially perfect buffers as described by Koymans (1987).

A crucial simplification has been made here concerning message passing.

We should have treated the fact that messages may be exchanged in sequence

or concurrently and some of them could be lost or duplicated in this way. The

usual treatment of this problem is to attach tags to messages so that they become

distinct from each other. To avoid obliging the specifier to deal with such details,

a logical treatment could have been defined here, much in the way that object

naming is dealt with through auxiliary attributes. Details are omitted.

All the properties discussed above have already been stated in the literature

on the actor model, e.g. by Clinger (1981), Hewitt and Baker (1977), despite

the lack of a formally stated axiomatisation. Hereafter, we name the full set of

logical axioms as Ax def
= {L1-4, O1-12, V1-4, F1-2}. The set Ax, on the other

hand, contains only the axioms with barred labels, wherein logical attribute

symbols do not appear. The axiomatisation of the actor model allows us to

derive the following more or less standard temporal logical rules for reasoning

about the concurrent behaviour of object communities:

Proposition 3.2.4 (Derived Rules of Inference) Given an actor specifica-

tion Φ = (∆, Ψ), ∆ = (Σ, A, Γ), the following inference rules are derivable for

existing objects in the Φ community, provided that {k, n1, n2} ⊂ VMSBTL

addr
, p1 and

q are local state formulas parameterised by n1 and p2 is a local state formula

parameterised by n2:

(EXIST) 1. p2[k]→ ∃~vb · n2.new(b, k, ~vb)
2. p1[k]→ q ∨

∨

c∈Γl
b

∃~vc · n1.new(c, k, ~vc)

b ∈ Γeb

p2[k]→ XG(p1[k]→ q)

(SAFE) 1.
∧

b∈Γl
b

∀~vb · n1.b(~vb)→ q

2.
∧

c∈Γc

∀~vc · n1.c(~vc) ∧ q → Xq

Gq

(INV) 1.
∧

c∈Γc

∀~vc · n1.c(~vc) ∧ q → Xq

q → Gq

(RESP) 1.
∧

c∈Γc

∀~vc · n1.c(~vc) ∧ p1[~vd]→ X(p1[~vd] ∨ n1.d(~vd))

2. n1.d(~vd)→ F(q[~vd])
3. p1[~vd]→ FE(n1.d(~vd))

d ∈ Γl−lb

n1.deliv (d, ~vd)→ X(F(p1[~vd])→ F(q[~vd]))

3.2. An Axiomatisation of the Actor Model 107

(COM) 1.
∧

c∈Γc

∀~vc · n1.c(~vc) ∧ p1[~vd]→ X(p1[~vd] ∨ n1.deliv (d, ~vd))

2. n1.deliv (d, ~vd)→ F(q[~vd])
3. p1[~vd]→ FE(n1.deliv (d, ~vd))

d ∈ Γe−eb
and

d ∈ Γl−lb n2.send d, n1, ~vd (→)X(F(p1[~vd])→ F(q[~vd]))

(NRESP) 1. p2[n1]→ ∃~vb · n2.new(b, n1, ~vb)
2. ∃~vb · n1.b(~vb)→ ∀vd · p1[~vd]
3. n1.d(~vd)→ q[~vd]
4. ∃n · n.deliv (d, ~vd)→ X(q[~vd])
5. n1.d(~vd)→ X(p1[~vd] ∨ q[~vd])

b ∈ Γlb∩eb

d ∈ Γl−lb p2[n1]→ XG(p1[~vd]→ (¬n1.d(~vd))W(n1.deliv (d, ~vd)))

(NCOM)

b ∈ Γlb∩eb

1. p2[n1]→ ∃~vb · n2.new(b, n1, ~vb)
2. ∃~vb · n1.b(~vb)→ ∀vd · p1[~vd]
3. n1.deliv (d, ~vd)→ q[~vd]
4. ∃n · n.send d, n1, ~vd (→)X(q[~vd])
5. n1.deliv (d, ~vd)→ X(p1[~vd] ∨ q[~vd])

d ∈ Γe−eb
and

d ∈ Γl−lb p2[n1]→ XG(p1[~vd]→ (¬n1.deliv (d, ~vd))W(∃n · n.send d, n1, ~vd ()))

The rules above can be derived using the axiomatisation of the branching time

logic and our logical axioms about the actor model. These rules are more conve-

nient to use because the logical attributes have been eliminated. Rule EXIST,

based on the fact that a name cannot be reused once it is given to some actor,

guarantees a local safety property from the configuration of the actors in the

environment. SAFE and INV are the usual rules for verifying safety and in-

variance properties. Rules COM and RESP capture the fairness requirements

on actor behaviours. They should be applied to verify that the consequences

of delivering or consuming a message are eventually obtained whenever the re-

cipient actor becomes enabled often enough to guarantee the occurrence of the

respective event. The slightly more complex rules for absence of communication

and response, NCOM and NRESP, respectively, need to be ground on the

creation of new actors since our axiomatisation admits initially present mes-

sages addressed to originally existing objects. Their conclusions are that, once

the actor is created, whenever there are no pending messages for delivery or

processing, messages will be delivered or consumed only if preceded by the oc-

currence of their triggering events. All these inference rules may be simplified

by a careful instantiation of the adopted schematic variables.

The rule COM in particular is to be used in proving properties that arise

from the interaction between two (potentially distinct) actors. The situation

108 Chapter 3. Designing Open Reconfigurable Systems

here differs from that described in (Barreiro et al. 1995), where interaction

is captured via action sharing in a more explicit and unconstrained manner.

Therein, a very strong form of fairness is proposed, since in general a shared

action may loose permission to happen in some component while obliged to take

place. Considering actor systems, however, such a fairness strengthening is not

required: an event must be locally provided by one actor only and cannot have

its permission to occur externally constrained in this way.

3.3 Verification of Local Properties

Let us illustrate the application of our specific proof calculus to the verification

of local properties of individual actors. From the BufferCell specification,

it is easy to see that once a cell is created, it may be consumed and linked

to another cell of the buffer afterwards. If a cell has already been consumed

and it is not the last element of the list, the cell will never perform such local

computations again. Hence, the cell will simply forward every incoming message

to the subsequent buffer element. The previous property is stated as follows:

`BufferCell void = T ∧ lst = F→ G(¬cons ∧ ¬link(n)) (3.3.1)

As in the examples of the previous chapter, we split the verification of this

property into two parts, which are both developed in a similar way. We first

deal with the action cons. The axioms in the specification are helpful in showing

that void, part of the antecedent of the implication above, is always invariant

after becoming true. To begin with the proof, let us examine the effect of the

action go over the value of this attribute:

1. go∧val = v∧void = x∧nxt = n∧lst = y→ (11.5)

X(val = v∧void = x∧nxt = n∧lst = y)
2. go∧val = v∧void = x∧nxt = n∧lst = y→ DIST-ANDX, HS 1

X(void = x) DIST-IFA, R1-MP, AND-E +

3. val = v→(go∧void = x∧nxt = n∧lst = y→ A1-I, A1-I, REFL, R1-MP

go∧val = v∧void = x∧nxt = n∧lst = y) AND-R, DIST-IFA, HS +

4. val = v→ LTRAN, R1-MP 2, LTRAN

(go∧void = x∧nxt = n∧lst = y→X(void = x)) R1-MP, R1-MP 3 +

5. go ∧ void = x ∧ nxt = n ∧ lst = y → GEN-∀ 4, EXC-∀∃, R1-MP

X(void = x) NVOID, R1-MP +

6. nxt = n→ (go ∧ void = x ∧ lst = y → A1-I, A1-I, REFL, R1-MP

go ∧ void = x ∧ nxt = n ∧ lst = y) AND-R, DIST-IFA, HS +

7. nxt = n→ LTRAN, R1-MP 5, LTRAN

(go ∧ void = x ∧ lst = y → X(void = x)) R1-MP, R1-MP 6 +

8. go ∧ void = x ∧ lst = y → GEN-∀ 7, EXC-∀∃, R1-MP

X(void = x) NVOID, R1-MP +

3.3. Verification of Local Properties 109

9. lst = y → (go ∧ void = x→ A1-I, A1-I, REFL, R1-MP

go ∧ void = x ∧ lst = y) AND-R, DIST-IFA, HS +

10. lst = y → LTRAN, R1-MP 8, LTRAN

(go ∧ void = x→ X(void = x)) R1-MP, R1-MP 9 +

11. go ∧ void = x→ X(void = x) GEN-∀ 10, EXC-∀∃, R1-MP, NVOID, R1-MP

12. go ∧ void = T→ X(void = T) GEN-∀ 11, A19-∀, R1-MP

The rationale behind the verification of the following two sentences is the

same as adopted above. Hence, the respective derivations can safely be omitted.

Then, we are allowed to conjoin these and sentence (12) above in order to obtain

the required premise for an application of rule INV, completing in this way the

verification that void is always invariant after becoming true.

13. link(n) ∧ void = T→ X(void = T) from 11.8

14. cons→ X(void = T) from 11.6

15. cons ∧ void = T→ X(void = T) AND-L 14

16. void = T→ G(void = T) AND-I 12, 13; AND-I 15; INV

Now we have to ensure that a buffer cell cannot be consumed more than

once. The following implication can be used to simplify considerably the speci-

fication axiom involved:

(¬(cons∨send reply, n, v ()))W(get(n)∧val = v∧void = F∧¬cons)→
(¬cons)W(get(n)∧void = F∧¬cons)

(3.3.2)

This sentence is provable based on MON-GW, which captures the monotonicity

of the connective W. The main derivation proceeds as follows:

17. cons→ (11.14), D15-P, AND-E, (3.3.2),

X((¬cons)W(get(n)∧void = F∧¬cons)) R2-G, MON-GX, R1-MP, HS +

18. (¬cons)W(get(n)∧void = F∧¬cons)→ REFL, D10-W, RPL-UF, OR-R

F(get(n)∧void = F∧¬cons) ∨G(¬cons) REFL, OR-R, OR-L, HS +

19. F(get(n)∧void = F∧¬cons)→ bool Ax, AND-L, R2-G

F(¬void = T) MON-GF, R1-MP +

20. (¬cons)W(get(n)∧void = F∧¬cons)→ INVE, R1-MP 19, RTRAN, R1-MP

(G(void = T)→ G(¬cons)) R1-MP, D3-OR, D9-G, HS 18 +

21. X((¬cons)W(get(n)∧void = F∧¬cons))→ R2-G 20, MON-GX, R1-MP

(XG(void = T)→ XG(¬cons)) MON-GX, HS +

22. cons→ XG(void = T) R2-G 16, MON-GX, R1-MP, HS 14

23. cons→ XG(¬cons) HS 17, 21; PERM, R1-MP

HS 22, CONT, R1-MP +

The action cons does not happen spontaneously. Indeed, it is caused by the

consumption of a message get. Based on the logical axiom O12, which forbids

110 Chapter 3. Designing Open Reconfigurable Systems

the occurrence of local computations in parallel with message consumptions, and

L1, which forces each actor to have an encapsulated state, we take advantage

of this causality relation to relate the actor state and the occurrence of local

computations:

24. get(n)∧val = v∧void = F→ DIST-ANDX, (11.11), HS

X(cons) DIST-IFA, AND-E +

25. val = v→ (get(n)∧void = F→ A1-I, A1-I, REFL, R1-MP

get(n)∧val = v∧void = F) AND-R, DIST-IFA, HS +

26. val = v→ LTRAN, R1-MP 24, LTRAN

(get(n)∧void = F→ X(cons)) LTRAN, R1-MP, R1-MP 25 +

27. ∃v · val = v→ (get(n)∧void = F→ X(cons)) GEN-∀ 26, EXC-∀∃, R1-MP

28. get(n) ∧ void = F→ X(cons) NVOID, R1-MP 27

29. G(¬cons)→ G(void = T→ ¬cons) A1-I, R2-G, MON-G, R1-MP

30. XG(¬cons)→ XG(void = T→ ¬cons) R2-G 29, MON-GX, R1-MP

31. G(cons→ XG(void = T→ ¬cons)) HS 23, 30; R2-G

32. get(n) ∧ void = F→ MON-GX

XXG(void = T→ ¬cons) R1-MP 31, HS 28 +

33. get(n) ∧ void = F→ O12, A19-∀

¬cons ∧ ¬link(k) ∧ ¬go HS, AND-L +

34. get(n) ∧ void = F→ DIST-ANDX, DIST-IF, HS, DM, HS 33

X(void = F) L1, D3-OR, HS, R1-MP, AND-E +

35. get(n) ∧ void = F→ X(void = F ∧ cons) AND-R 28, 34, DIST-IFA, HS

36. (cons→ void = F)→ (cons→ ¬void = T) bool Ax, LTRAN, R1-MP

37. void = F ∧ cons→ (void = T→ ¬cons) A1-I, AND-E, HS 36, INVE, HS

38. get(n) ∧ void = F→ R2-G 37, MON-GX

X(void = T→ ¬cons) R1-MP, HS 35 +

39. get(n) ∧ void = F→ AND-R 32, 38; FIX-G, R2-G

XG(void = T→ ¬cons) MON-GX, R1-MP, HS +

40. get(n) ∧ void = F→ ¬cons DIST-IFA, HS 33, AND-E

41. get(n) ∧ void = F→ (void = T→ ¬cons) A1-I, HS 40

42. get(n) ∧ void = F→ G(void = T→ ¬cons) AND-R 39, 41; FIX-G, HS

We wish to conclude the proof that cells in the void state can never be

consumed again. Note that this is true from the initial instant onwards. So, we

can develop the remainder of the proof based on the specification axiom (11.14),

which requires that since the beginning of time no get message be processed

before the actor birth:

43. beg→ (11.14), D15-P

(¬cons)W(get(n) ∧ void = F ∧ ¬cons) AND-E, (3.3.2), HS +

44. beg→ OR-L 42, D10-W

G(void = T→ ¬cons) ∨ (void = T→ ¬cons)U(¬>) TRAN-W 43, D10-W +

45. ¬F(¬>)→ D3-OR 44, PERM, R1-MP

(beg → G(void = T→ ¬cons)) RPL-UF, INVE, R1-MP, HS +

46. beg→ G(void = T→ ¬cons) D9-G 45, G>, R1-MP

3.4. Composition of Actor Specifications 111

47. void = T→ ¬cons R3-begG 46

48. G(void = T)→ G(¬cons) R2-G 47, MON-G, R1-MP

49. void = T→ G(¬cons) HS 16, 48

In a similar way, it can be shown that ` BufferCell lst = F→ G(¬link(n)). Conjoin-

ing these partial results based on AND-L and DIST-IFA, we conclude that

(3.3.1) is derivable using DIST-ANDG.

The example above serves to illustrate important peculiarities in the ver-

ification of local safety properties of actors. Essentially, the same principles

proposed in the previous chapter can be used to start this process. Note for

instance that, due to the locality and local sequentiality assumptions, we could

verify a buffer cell invariant using a case analysis argument based on the effect

of each local computation over the attributes. However, because the occurrence

of such local events is normally determined by the consumption of messages, we

also have to rely on causality axioms to link both kinds of occurrence.

It is also interesting to note that, because we propose a set of logical axioms

which takes into account the existence of a community of actors, here we have

to particularise some of these axioms by removing the name of the respective

actor from each expression in order to verify local safety properties. Because no

interaction is involved, we may use just the set of axioms in Ax together with

SAFE and INV, since logical symbols are introduced and axiomatised by the

remaining logical axioms and rules precisely to support interaction. This whole

process seems to be in contrast to the work of America and de Boer (1996), who

adopt a three level axiomatisation and lift local sentences to intermediate and

global contexts whenever necessary.

3.4 Composition of Actor Specifications

In Section 3.2.1 we discovered that, to give an account of what is usually consid-

ered to be a complex component in the actor model, we need at least to be able

to put distinct signatures together to represent the linguistic structure of yet

another component or an entire system. More generally, the view that complex

descriptions should be defined in terms of simpler descriptions put together has

been developed within the theory of Institutions by Goguen and Burstall (1992)

and requires the definition of basic entities to be regarded as design units. In

our case, they will be actor specifications.

It is also necessary to provide means of connecting object descriptions

to each other. Traditionally, in a proof-theoretic approach to design, this is

112 Chapter 3. Designing Open Reconfigurable Systems

achieved by providing translations between the languages of the related theories

(Maibaum and Turski 1984). If a symbol-to-symbol mapping, i.e., a morphism,

between two actor signatures is given, the existence of a compositional relation

of translation between the respective languages can be guaranteed.

Definition 3.4.1 (Actor Signature Morphism) Given two actor signatures

∆1 = (Σ1, A1, Γ1) and ∆2 = (Σ2, A2, Γ2), an actor signature morphism τ : ∆1 →

∆2 consists of:

• a morphism of algebraic structures τυ : Σ1 → Σ2 such that τυ(addr1) =

addr2;

• for each f ∈ A1〈s1,...,sn〉,s
, an attribute symbol τα(f) : τυ(s1)×. . .×τυ(sn)→

τυ(s) in A2;

• for each c ∈ Γ1〈s1,...,sn〉
, an action symbol τγ(c) : τυ(s1)× . . .× τυ(sn) in Γ2

such that: (i) τγ(Γc1) ⊆ Γc2; (ii) τγ(Γeb1
) ⊆ Γeb2

; (iii) τγ(Γe1−eb1
) ⊆ Γe2−eb2

;

(iv) τγ(Γlb1
) ⊆ Γlb2

; (v) τγ(Γl1−lb1
) ⊆ Γl2−lb2

and (vi) τγ(Γl1−e1) ⊆ Γl2−e2.

It is straightforward to provide a compositional definition for the translation of

classifications, terms, formulae and sets thereof under τ .

Translations that necessarily relate the distinguished symbol of each signature,

as defined above concerning addr, have been called pointed morphisms in the

literature (Parisi-Presicce and Pierantonio 1994). Since renaming is possible in

translating the other signature symbols, morphisms capture the relabelling oper-

ation proposed by Agha (1986) to equalise identifiers in distinct descriptions. In

addition, it is possible to use signature morphisms to allow some external sym-

bols, members of Γe, to become local as well. This stems from the fact that, in a

complex configuration, there may be events required from the environment of a

component which are not provided by the environment of the whole configura-

tion, because they are ensured by another component of the same configuration.

It is not difficult to see that any given actor signature morphism induces other

morphisms between the corresponding extended and parameterised signatures,

by translating their additional symbols according to the way the original sym-

bols are translated by the given morphism. This means that the specifier, in

defining a morphism to connect two signatures, does not need to be concerned

with the new symbols introduced in their extension or parameterisation.

We would like to be always able to combine any finite number of actor sig-

natures so as to ensure the necessary structure to support interaction. This can

be accomplished if we can show that actor signatures and morphisms determine

a finitely co-complete category, as explained in the previous chapter:

3.4. Composition of Actor Specifications 113

Theorem 3.4.2 (Category of Actor Signatures) Actor signatures and mor-

phisms constitute a finitely co-complete category SigAct.

Proof: To ensure that we have a category, we must show that identities exist

and composition is associative. Considering that morphisms are set-valuated

functions, the only difficulty that may arise in verifying the existence of identity

is due to the non-disjoint sets of action symbols. But, for ∆
id
→ ∆, if c ∈ Γeb

, (a)

id(c) ∈ Γeb
, from (ii) and (iii) in the definition of signature morphisms. Now,

if it is also the case that c ∈ Γlb , (b) id(c) ∈ Γlb , from (iv) and (v). Due to

(a) and (b), id(c) ∈ Γeb∩lb whenever c ∈ Γeb∩lb . The same argument applies to

any c ∈ Γ(e−eb)∩(l−lb) and therefore SigAct admits identity, the constant function

on sets. The associativity of signature morphisms follows directly from their

set-theoretic definition.

The initial element of this category is ∆⊥ = (({addr}, { }), { }, { }). Given a

pair of morphisms ∆
τ1→ ∆1, ∆

τ2→ ∆2, their pushout is defined up to isomorphism

by any pair of morphisms ∆1
τ1′→ ∆′, ∆2

τ2′→ ∆′ such that S ′ = τ1′(S1)⊕τ (S)τ2′(S2),

Ω′ = τ1′(Ω1)⊕τ (Ω)τ2′(Ω2), A′ = τ1′(A1)⊕τ(A)τ2′(A2) and Γ′ = τ1′(Γ1)⊕τ (Γ)τ2′(Γ2),

where τ = τ ′1 ◦ τ1 = τ ′2 ◦ τ2. The existence of the initial element and pushouts is

sufficient to guarantee finite co-completeness. (SigAct Category)

Specification morphisms induced by the signature morphisms above do not

capture the expected enrichment of object behaviour as usual in Institutions

(Goguen and Burstall 1992). This happens because they do not translate our

additional logical axioms, which are needed to guarantee a correct collective

behaviour. This shows that such morphisms do not determine interpretations

between theories. To support this, the following morphisms are used:

Definition 3.4.3 (Actor Specification Morphisms) Given two actor spec-

ifications Φ1 = (∆1, Ψ1) and Φ2 = (∆2, Ψ2), a specification morphism τ : Φ1 →

Φ2 is a signature morphism lifted to sentences such that `Φ2 τ(g) for every

g ∈ Ψ1 ∪ AxΦ1 .

The inclusion of the translated logical axioms τ(AxΦ1) into Φ2 is necessary as

they represent properties which are not always a consequence of AxΦ2 , since

some of these axioms rely on the existence of the original signature symbols

only. Once the signature is augmented with new symbols using a morphism, the

respective properties may fail to hold. The locality property, for instance, is not

preserved by the translation, as shown by Fiadeiro and Maibaum (1992).

Our finite co-completeness result concerning the category of actor signa-

tures easily lifts to categories of extended and parameterised signatures. Much

114 Chapter 3. Designing Open Reconfigurable Systems

in the same way, it can be transported to a category of actor specifications with

the morphisms defined above:

Proposition 3.4.4 (Category of Actor Specifications) Actor specifications

and morphisms constitute a finitely co-complete category SpecAct.

A comparison between our notion of composability and that of Agha et al.

(1997) and Talcott (1996b) is in order. As discussed in the previous chapter,

composition is realised here by computing co-limits, or pushouts in the particu-

lar case of two connected specifications. Given a set of specifications with their

pairwise shared sub-components fixed, pushouts of specification morphisms are

commutative and have (∆⊥, { }) as their identity. In addition, all their possible

compositions in any order are isomorphic among themselves, which yields asso-

ciativity up to isomorphism. Nevertheless, these are the only similarities with

their semantic notion. The composability notion in their work is dynamic and

fails to put together components having in common identical names of existing

actors. This is syntactically immaterial, though, since there is a canonical way

of relating actor syntax and semantics, as hinted by Agha (1986) and followed

here, obliging the composed specifications to entail configurations with disjoint

sets of existing actor addresses. We treat the dynamic composition of actor

components while developing rely-guarantee proofs, as outlined in Section 3.5.

We also need to compare the composition of actor specifications using the

morphisms above to the similar usage of categorical notions in Chapter 2. It

is particularly important to mention that, because of the implicit parameteri-

sation of actor signatures by a sort of mail addresses and the restricted use of

logical action symbols to support interaction, it is not possible to express at the

local level any form of extra-logical sharing of signature symbols. This means

that at this point interaction is supported logically, always by the synchronised

actions introduced in the extension of actor signatures, which may occur simply

because the interaction is between actors belonging to the same community or,

conversely, because they belong to distinct communities and the designer de-

cided to define morphisms to support their interaction. This is in keeping with

the local discipline imposed by the actor model, which precludes any form of

interaction other than by object creation and asynchronous message passing.

Using the constructions described above, we can now study communities

of heterogeneous actors. A good example is obtained by composing a buffer

as described in Section 3.2.1, a processor and a set of terminals to represent a

uniprocessor time-sharing architecture. The intended behaviour of the respective

component, whose specification shall be called UTSA, is to allow commands

3.4. Composition of Actor Specifications 115

Actor Terminal
data types addr, cmd

attributes bf : addr

actions
ter(addr) : local + extrn birth;
rd(cmd) : local computation;
tr(cmd) : extrn message

axioms n : addr; v : cmd

ter(n)→ bf = n (12.1)
FG(∀v · ¬rd(v)) (12.2)
rd(v)∧bf = n→X(bf = n) (12.3)
rd(v)∧bf = n→X(send tr, n, v ())

(12.4)
send tr, n, v (←)rd(v) ∧ bf = n (12.5)

End

Actor Processor
data types addr, cmd (NEX, BEG : cmd)
attributes in, id : addr; prv : cmd

actions pro(addr, addr) : local + extrn birth;
exc(int) : local computation;
nop, rec(int) : local + extrn message;
req(addr) : extrn message

axioms n, p : addr; v : cmd

pro(n, p)→ id = n ∧ in = p ∧ prv = NEX (13.1)
pro(n, p)→ X(exc(BEG) ∧ send nop, n ()) (13.2)
exc(v)→ X(prv = v) (13.3)
exc(v)∧id = n∧in = p→X(id = n∧in = p) (13.4)
nop∧id = n∧in = p→X(send req, p, n ()) (13.5)
nop ∧ id = n→ X(send nop, n ()) (13.6)
rec(v)→ X(exc(v)) (13.7)
exc(v)← rec(v)∨∃n, p · pro(n, p)∧v = BEG (13.8)
send nop, n (←)id = n∧∃p · pro(n, p)∨nop (13.9)
send req, p, n (←)nop ∧ id = n ∧ in = p (13.10)
E(rec(v))→ v 6= NEX (13.11)
prv 6= NEX→FE(deliv (nop)) ∧ FE(nop) (13.12)
prv 6= NEX∧v 6= NEX→FE(deliv (rec(v))) (13.13)
prv 6= NEX∧v 6= NEX→FE(rec(v)) (13.14)

End

Figure 3.2: Simplified specification of terminals and processors.

typed by terminal users to be always processed eventually. The specification of

terminal and processor actors for this purpose appear in Figure 3.2.

A terminal becomes aware of the mail address of a cell which will serve

as a buffer at creation time (12.1). Afterwards, the terminal always transmits

typed commands to this initial buffer cell so that they can wait for processing

(12.4). The reading capability of terminals, however, is finite according to (12.2).

Processors, in turn, have a more complex behaviour since they have to request

commands from the buffer at any possible occasion (13.5). Valid commands may

always be eventually delivered to the processor after initialisation (13.13). That

is, any command except NEX, which stands for a not executable command, can

be delivered to the processor after the first BEG is executed. Once received, any

command is subsequently executed (13.7). The computation cycle of the pro-

cessor alternates among performing no action, in which case time simply passes

without witnessing the occurrence of any action, and processing the messages

nop (13.5, 13.6), rec (13.7) or the local computation exc (13.3, 13.4). This cycle

begins just after the occurrence of the actor birth denoted by the action symbol

pro (13.2).

Clearly, the actors above cannot work as a single component unless the

116 Chapter 3. Designing Open Reconfigurable Systems

@
@

@@I

.�
�
���

@
@

@@I

�
�
���

�
�
���

@
@

@@I

�
�
���

@
@

@@I

�
�
���

@
@

@@I

-

-

-

�

�

� -

-

-

UTSA

Component2Component1

ProcessorBufferCellTerminal

Connector1 Connector2

µ1,1

τ1,1 τ1,2 τ2,1 τ2,2

µ2,2µ2,1µ1,2

κ1 κ2

(a)

putx

Terminal⊕BufferCell

get

rec

reqy

z

BufferCell ⊕Processor

tr

reply

µ1,1 µ1,2

µ2,1

µ2,1

µ2,2

µ2,2 κ1 ◦ τ1,2

κ2 ◦ τ2,1

κ2 ◦ τ2,2

κ1 ◦ τ1,1
(c)

ter

nil

pro

buffer

processor

terminal

(b)

Figure 3.3: Static configuration of the multi-tasking system.

proper interconnections between them are provided. Morphisms establish “phys-

ical shared channels” to make message passing possible, as defined in Figure 3.3,

part (a). Component1, Component2 and UTSA, which result from the com-

position of the three given specifications, are all defined up to isomorphism by

the pushout of the given morphisms. This means that any name for each of

their symbols suffices as long as the symbols to be shared and only them are

equalised. They are defined according to the two connector specifications and

the morphisms in Figure 3.3, part (b). The signature of Connector1 contains

one external message symbol only, x, which is mapped to the tr action of ter-

minals and to the put action of buffers. Connector2 has two such symbols, y

and z, which are mapped to get and reply at the buffer side and to req and rec at

the processor side, respectively. The set of axioms in both connector specifica-

tions is empty. Assuming that the underlying algebraic morphisms map the mail

address sort accordingly and associate integers to commands, the morphisms in

the figure clearly satisfy the requirements of Definition 3.4.3.

3.5. A Rely-Guarantee Design Discipline 117

3.5 A Rely-Guarantee Design Discipline

Moving away from the traditional direct approach to specification and verifica-

tion appears to be inevitable when the features of open reconfigurable systems

have to be treated. Isolated specifications establish only the local properties of

each specified object. Dynamic (re)configuration and object interaction are two

global features which remain completely untreated in this way. The approach

for treating such features while preserving the local design discipline is now stan-

dard: Chandy and Misra (1981) propose a rely-guarantee discipline which allows

us to deal with global properties in an organised conditional manner.

Rely-guarantee design is based on the premise that specification and veri-

fication take place in a context where the description of component behaviour is

relativised to take into account that of the environment, i.e., their limited inter-

action is described explicitly. Either in specifying or verifying some properties

of a component, a rely clause defines a property related to the component which

the environment is assumed to satisfy. A guarantee clause is also used to ex-

press the properties related to the environment which the component maintains

provided that the assumption on the environment holds. The formal semantics

of each of these clauses varies according to the adopted design discipline and the

mode of interaction assumed in the underlying model. They also provide useful

information that may be helpful in some refinement steps (Jones 1983).

Due to our interest in dealing with dynamic configuration and interaction

of actor components while preserving the discipline for specification and com-

position described so far, we choose to impose a rely-guarantee discipline in the

verification process only. For a given specification Φ and finite sets of formu-

las init, rely, pre, guar and post based on Φ, we adopt assertions of the form

init : {pre, rely}Φ {guar, post} meaning that, given the initial conditions init,

whenever the pre-conditions pre are simultaneously established and the assump-

tions rely are not violated unless the guarantees in guar and a post-condition in

post are obtained, the guarantees are not violated until and necessarily including

the moment when the post-condition is obtained, for all the post-conditions in

post. Putting JP
def
=

∧

{p|p ∈ P}, such assertions are formalised as follows:

Definition 3.5.1 (Rely-Guarantee Assertion) Given a theory presentation

Φ = (∆,Ψ) in obj SpecAct and init∪ rely ∪ pre∪ guar∪ post ⊆ G(∆) such that

each of these sets is finite, rely-guarantee assertions are defined below:

(D16-RG) init : {pre, rely}Φ {guar, post} def
=

Φ `
∧

p∈post

Jinit → XG(Jpre ∧ (Jrely)W(p ∧ Jguar)→ (Jguar)U(p ∧ Jguar))

118 Chapter 3. Designing Open Reconfigurable Systems

If compared to other rely-guarantee assertions available in the literature,

our definition is rather unusual. The initialisation condition is normally treated

elsewhere: Pnueli (1985a) considers that it is provided together with process

composition while initialisation is treated as in VDM, separated from the opera-

tions, in the extension of this method proposed by Jones (1983). Since we allow

any temporal formula in the set of initialisation conditions, they can be used

to capture assertion bases, which distinguish communication ports from other

variables as proposed by Pandya and Joseph (1991). Rely and pre conditions

appear conjoined as an assumption formula in the logical approach advocated

by Abadi and Lamport (1995) and by Jonsson and Tsay (1995), much in the

way that guarantee and post conditions are conjoined in a commitment formula.

The separation adopted here seems to help emphasise the role of each distinct

set of properties in the verification process. The distinctions we make are also

justified by our desire to use just the rely-guarantee assertions above to deal

with dynamic configuration and interaction. A more pragmatic reason justifies

the adoption of a set of independently realisable post-conditions. Most authors

consider that, if system behaviour or specified operation terminates, this de-

termines a definite state satisfying all the post-conditions (Pandya and Joseph

1991). A wait clause is sometimes introduced to express an invariant over the

states of non-terminating computations (Cau and Collete 1996). Because we

are dealing here with open systems which are never required to terminate but

in general eventually validate each of a number of properties, we prefer to adopt

post-conditions in the way defined above.

The reader may have correctly observed that with the definition above

we have attempted to stay as close as possible to the use of rely-guarantee

constructions in model and process based formalisms while taking advantage

of the temporal logical features of our own formalism. Let us examine some

practical situations that normally arise in designing software systems in this

way. First, note that free variables may appear in the formulas of each set of

clauses. This is useful, say, in binding actor names to the specifications they

comply with. Also note that each set of clauses may be empty. In this case,

their respective logical value is equivalent to >, the rely-guarantee assertion is

simplified and reasoning becomes easier.

Rely-guarantee constructions are interesting not only due to the additional

expressiveness and discipline they introduce into dealing with global phenomena,

but also because they may be decomposed and reused. A composition rule

is normally proposed to achieve these effects in the verification process. The

following inference rule plays this role here:

3.5. A Rely-Guarantee Design Discipline 119

Theorem 3.5.2 (Composition Rule) Given a theory presentation Φ = (∆,

Ψ) in obj SpecAct and
⋃

{rely, guar} ∪ {initi, prei, posti|1 ≤ i ≤ 2} ⊆ G(∆)

such that the resulting set is finite, the following inference rule is derivable:

(COMP) 1. init1 : {pre1, rely}Φ {guar, post1}
2. init2 : {pre2, guar}Φ {rely, post2}

init1 ∪ init2 : {pre1 ∪ pre2, rely ∪ guar}Φ {rely ∪ guar, post1 ∪ post2}

Proof: Assume that p ∈ post1. We will show that the first premise regarding

p can be transformed into a rely-guarantee assertion which complies with the

format of the conclusion:
1. Jinit1 → Ass, D16-RG

XG(Jpre1 ∧ (Jrely)W(p ∧ Jguar)→ (Jguar)U(p ∧ Jguar))
2. Jinit1 ∧ Jinit2 → AND-L 1

XG(Jpre1 ∧ (Jrely)W(p ∧ Jguar)→ (Jguar)U(p ∧ Jguar))
3. Jpre1 ∧ Jpre2 ∧ (Jrely ∧ Jguar)W(p ∧ Jrely ∧ Jguar)→ Jpre1 REFL, AND-L

4. (Jrely ∧ Jguar)W(p ∧ Jguar)→ REFL, AND-L, R2-G

(Jrely)W(p ∧ Jguar) MON-GW, R1-MP +

5. (Jrely ∧ Jguar)W(p ∧ Jrely ∧ Jguar)→ REFL, AND-L, R2-G

(Jrely ∧ Jguar)W(p ∧ Jguar) MON-GW, R1-MP +

6. Jpre1 ∧ Jpre2 ∧ (Jrely ∧ Jguar)W(p ∧ Jrely ∧ Jguar)→ HS 5, 4

(Jrely)W(p ∧ Jguar) AND-R +

7. Jpre1 ∧ Jpre2 ∧ (Jrely ∧ Jguar)W(p ∧ Jrely ∧ Jguar)→ AND-L 3, 6

Jpre1 ∧ (Jrely)W(p ∧ Jguar)
8. Jinit1 ∧ Jinit2 → XG(Jpre1 ∧ Jpre2∧ RTRAN, R1-MP 7, R2-G, EXP-GX

(Jrely∧Jguar)W(p∧Jrely∧Jguar)→(Jguar)U(p∧Jguar)) R1-MP, MON-XG, R1-MP, HS 2 +

9. G(Jrely ∧ Jguar)→ A1-I, R2-G, MON-G

G(Jguar → Jrely ∧ Jguar) R1-MP +

10. G(Jrely ∧ Jguar)→ RTRAN, R1-MP 9

((Jguar)U(p ∧ Jguar)→ (Jrely ∧ Jguar)U(p ∧ Jguar)) MON-GU, R1-MP +

11. G(p ∧ Jrely ∧ Jguar → p ∧ Jguar) REFL, AND-L, R2-G

12. (Jguar)U(p ∧ Jrely ∧ Jguar)→ (Jguar)U(p ∧ Jguar) MON-GU, R1-MP 11

13. G(Jrely ∧ Jguar)→ PERM, R1-MP 10, HS 12

((Jguar)U(p ∧ Jrely ∧ Jguar)→ (Jrely ∧ Jguar)U(p ∧ Jguar)) PERM, R1-MP +

14. Jrely ∧ Jguar → A1-I, RTRAN, INVE,

(p ∧ Jguar → p ∧ Jrely ∧ Jguar) HS, D4-AND, HS +

15. G(Jrely ∧ Jguar)→ R2-G 14, MON-G

G(p ∧ Jguar → p ∧ Jrely ∧ Jguar) R1-MP +

16. G(Jrely ∧ Jguar)→ MON-GU, HS 15, LTRAN

((Jguar)U(p ∧ Jguar)→ (Jrely ∧ Jguar)U(p ∧ Jrely ∧ Jguar)) R1-MP, HS 15 +

17. (Jrely ∧ Jguar)U(p ∧ Jrely ∧ Jguar)→ A1-I

((Jguar)U(p ∧ Jguar)→ (Jrely ∧ Jguar)U(p ∧ Jrely ∧ Jguar))
18. Jpre1 ∧ Jpre2 ∧ (Jrely ∧ Jguar)W(p ∧ Jrely ∧ Jguar)→ OR-L 16, 17

((Jguar)U(p ∧ Jguar)→ (Jrely ∧ Jguar)U(p ∧ Jrely ∧ Jguar)) D10-W, AND-L +

19. Jinit1 ∧ Jinit2 → XG(Jpre1 ∧ Jpre2∧
(Jrely ∧ Jguar)W(p ∧ Jrely ∧ Jguar)→ (Jrely ∧ Jguar)U(p ∧ Jrely ∧ Jguar))

The last step in the derivation above is justified by the following sequence of

labels: A2-I, R1-MP 19, R2-G, EXP-GX, R1-MP, MON-XG, R1-MP,

HS 8. Repeating the same process for all the elements of post1 and developing an

120 Chapter 3. Designing Open Reconfigurable Systems

analogous argument regarding post2, we conclude that the last sentence above is

derivable for all the elements of post1 ∪ post2. Note that this process terminates

because the involved sets are assumed to be finite. Considering that JP1∧JP2 ↔

JP1∪P2 for any Pi ∈ {inii, prei, relyi, guari, posti}, 1 ≤ i ≤ 2, an application of

D16 completes the derivation of the conclusion of COMP. (COMP)

Jonsson and Tsay (1995) have remarked that composition rules such as the above

are a simple consequence of the standard meaning of rely-guarantee assertions,

which requires the guarantees to be valid when each post-condition is obtained

regardless of the validity of the assumptions then. Our Definition 3.5.1 captures

this meaning including Jguar in the second argument of both W and U. Note

that the first connective is used in the antecedent formula of the defined implica-

tion because therein the guarantees and the post-condition cannot be assumed

to occur and the definition of unless, D10-W, ensures that this is the case. The

until connective adopted in the consequent of the same implication says that

these formulas eventually obtain, according to RPL-UF. The theorem above

allows us to infer a more widely applicable composition rule as a corollary:

Corolary 3.5.3 (General Composition Rule) Given a theory presentation

Φ = (∆, Ψ) in obj SpecAct and the finite set
⋃

{init, pre, rely, guar, post} ∪

{initi, prei, relyi, guari, posti|1 ≤ i ≤ 2} ⊆ G(∆), provided that the following

side-conditions are met, the subsequent inference rule is derivable:

init1 ∪ init2 ⊆ init pre1 ∪ pre2 ⊆ pre rely2 ⊆ rely ∪ guar1

guar ⊆ guar1 ∪ guar2 post1 ∪ post2 ⊆ post rely1 ⊆ rely ∪ guar2,

(GCOMP) 1. init1 : {pre1, rely1}Φ {guar1, post1}
2. init2 : {pre2, rely2}Φ {guar2, post2}

init : {pre, rely}Φ {guar, post}

Proof: The proof is developed based on the application of COMP using the side

conditions enumerated above and on the refinement of the given premises using

the monotonicity of some temporal connectives. (GCOMP)

This rule is more general than that proposed by Cau and Collete (1996) for com-

posing rely-guarantee assertions about synchronous message passing processes

because we do not require that each premise refers to a single object only. An

analogue to their rule is obtained by providing two connected specifications Φi,

1 ≤ i ≤ 2, plus the respective morphisms in a way that their pushout determines

Φ; initi, prei, relyi, guari and posti contain only local formulas parameterised

by n1
i ∈ Vaddr and n2

i appears free in Φi. Mapping assertions about each specifi-

cation into Φ using the given morphisms, GCOMP can be applied. Typically,

3.6. Verification of Global Properties 121

init or pre would contain a formula like n1
i = n2

3−i, 1 ≤ i ≤ 2, to realise the par-

allel composition of the specified objects. More elaborated rules may deal with

hidden symbols which we do not feel necessary here in view of the possibility of

organising actor specifications in design structures supporting hidden features,

in the way originally suggested by Fiadeiro and Maibaum (1994). We will have

an opportunity to illustrate the use of these rules and disciplines in Chapter 5.

Now we may conclude the comparison of our constructions and the dy-

namic algebraic operations for manipulating actor components defined by Tal-

cott (1996b). The simplest such an operation is hiding, which is approximated

here by postulating an initial actor configuration using init and preventing some

objects from receiving messages from the outside environment, using init or rely

depending on whether this constraint is to be static or dynamic. Renaming is

another algebraic operation. It does not have a syntactic counterpart but is

ensured whenever we refrain from using constants of type addr. Finally, paral-

lel composition is obtained as outlined above. That some components are not

composable is reflected here by the impossibility of finding non-empty sets of

equalising assumptions of the kind described above while preserving the truth

of the antecedent of the resulting assertion. We devote the following section to

an example clarifying the verification of rely-guarantee assertions.

3.6 Verification of Global Properties

If the uniprocessor time-sharing architecture described in Section 3.4 is to present

the behaviour outlined therein, that user commands are always processed even-

tually, we must stipulate under which circumstances this property is expected.

Clearly, there are situations in which this is not established. Assume that a

finite number of terminals is connected to a single processor via a buffer. This is

the minimal condition we require to ensure that the property above makes sense.

Without loss of generality, we postulate that there are exactly two terminals in

this configuration. If other arbitrary objects apart from the processor could re-

move commands from the buffer, if this last component could ignore commands

from a specific terminal indefinitely, the characteristic property above would not

be established. Considering such properties as part of a rely-guarantee asser-

tion, we can prove that the characteristic property is indeed obtained. Adopting

the translations of birth action symbols in Figure 3.3, part (c), the definition

∀x : y · p[x] def
= ∀x ·Reach(y, x)→ p[x] and a similar one for ∃, both based on an

auxiliary action symbol Reach, we state this assertion as follows:

122 Chapter 3. Designing Open Reconfigurable Systems

Assertion C

init k.new(buffer, n), k.new(processor, m, m, n), k.new(terminal, ti, n) (1 ≤ i ≤ 2),
G(∀v · ∀y : n · y.put(v)→ XG(¬y.put(v))),
G(∀y · (∃v · y.send put, n, v ())→ y = t1 ∨ y = t2),
G(∀v · ∀x, y : n · ∃z : x · z = y ∨ (¬x.send put, x.nxt, v ())W(y.send put, y.nxt, v ()))

rely ∀y · (∃x : n · x.get(y))→ y = m

pre ∃y · y.rd(v) ∧ (y = t1 ∨ y = t2), v 6= NEX

post m.exc(v)

Assertions such as C have the meaning described in the previous section.

The first three formulas under init say that the buffer, processor and terminals

are considered to be initially created and linked. This illustrates that the de-

signer, in order to be able to verify any global property, is required not only

to provide morphisms, allowing actors in different communities to share part of

the same language, but also to ensure the existence of some “logical” channels,

names which bind actors to each other and enable message passing. Init says in

addition that cells of the buffer can only consume each distinct command once,

a simplifying assumption, that put messages are dispatched to the initial buffer

cell n solely by one of the two terminals, and that each cell dispatches a com-

mand to the subsequent buffer element only if all the previous cells of the buffer

dispatched the same command in the past. The last two properties are static

configuration constraints. The dynamic assumption rely on the environment is

that the buffer is only requested to send commands to the processor m. The

formulas under pre and post say that, providing the reading of an executable

user command from some terminal, the command is eventually processed. Note

that no guarantees are asserted (thus the respective set of formulas is empty)

because we are only interested in verifying the post-condition. One guarantee

offered by the specified component which we could verify is that all processor

requests are addressed to the buffer, a direct consequence of (13.13).

It is important to clarify that the assertion above is expected to be deriv-

able in an extension of UTSA (named UTSA1) in which the meaning of Reach

is specified. We adopt the axioms in Figure 3.4. Such auxiliary definitions are

conventional in formal methods, especially in model-based formalisms (Jones

1990). Here we have to be careful in using such constructions since our sen-

tences are required to belong to the language of some theory presentation. In

turn, the verification of actor component properties often calls for global def-

initions such as that of Reach, which are not allowed by parameterised actor

specifications. Moreover, any such auxiliary symbol would possess the additional

properties entailed by our actor model axiomatisation. This is not desirable in

practice. To overcome this problem, we rely on a functor mapping presentations

of our MSBTL extension into this underlying temporal logic. The functor maps

3.6. Verification of Global Properties 123

beg→ ¬Reach(x, y) (3.6.1)

k.new(nil, x) ∨ ∃v · k.new(item, x, v)→ X(Reach(x, x)) (3.6.2)

(k.new(nil, x) ∨ ∃v · k.new(item, x, v)) ∧Reach(y, k)→ X(Reach(y, x)) (3.6.3)

k.new(nil, x) ∨ ∃v · k.new(item, x, v) ∨ Inv(Reach(x, x)) (3.6.4)

(k.new(nil, x) ∨ ∃v · k.new(item, x, v)) ∧Reach(y, k) ∨ x 6= y ∧ Inv(Reach(y, x)) (3.6.5)

Figure 3.4: Definition of Reach.

extra-logical axioms via the identity and transforms the logical axioms into sen-

tences of the target theory presentation. Specification morphisms are mapped

accordingly. In this way, we can still use our derived inference rules as a valid

reasoning technique. Theory presentations allowing definitions as in Figure 3.4

and assertions like C are considered to be in an extension of the functor image.

Hereafter, we ignore such technicalities for the sake of simplicity.

What is asserted by C is an instance of the so-called Fair Merge Problem.

That is, the processing of sequences of commands from each user must be fair;

in other words, that each of them must not have the completion of its execution

indefinitely delayed. To understand the validity of this assertion, first note that

the respectively linked buffer cells are organised as a reversed queue. Each cell

either processes incoming messages or these are forwarded to the remainder of

the buffer, because the cell has already been consumed or is not the last element

of the queue, or else each message is ignored, because the entire buffer is empty.

Now, because the buffer is required by init to receive messages from the two

terminals only and these actors eventually stop producing commands according

to (12.2), the buffer itself will always be finite in any behaviour, meaning that

commands will be fairly stored in and retrieved from this component. Further-

more, since our assumption rely is that the buffer is hidden from the environment

with respect to receiving get messages, only the processor will recurrently re-

quest commands and possibly receive a reply from the buffer. Each command

dispatched by a terminal will be eventually processed in this way.

The explanation above does not clarify how the formulas in our assump-

tion were chosen nor the criteria for their placement in one clause or another.

The init clause should only contain formulas describing the initial state and

the static configuration constraints that always hold about the component. The

pre-conditions should just trigger the eventual occurrence of each post-condition.

Rely formulas are expected to be true until but not necessarily including each

124 Chapter 3. Designing Open Reconfigurable Systems

of these post-condition occurrences. Note that we could have written our penul-

timate initialisation condition as part of our rely assertion. However, such an

assertion would be too weak for our purposes: those messages dispatched before

the occurrence of the pre-condition could produce undesirable interference in the

behaviour of the architecture. On the other hand, reducing assumptions to the

local delivery of messages, as we did in proposing the rely condition, corresponds

to ground our analyses on the “local time” of each component (Clinger 1981).

The rigorous verification of the assertion above is based on the definition

of a (relative) well-founded relation as explained in Section 2.7. We propose an

extension of UTSA1 (named UTSA2) and choose to include in this extension

the following action symbol definition concerning buffer cells:

R(n, x, y)↔ Reach(n, x) ∧ Reach(n, y) ∧ y.nxt = x ∧ y.lst = F (3.6.6)

In general, R does not define a well-founded relation. If we take into account just

those cells reachable from the assumed initial buffer element n, a well-founded

relation is indeed defined. To verify this, we consider in the sequel that UTSA2

is also endowed with an unconstrained flexible symbol t of sort addr and that

formulas in each of the clauses of our assertion are linearly ordered according to

their position in C to facilitate references. We omit almost all the details which

are not strictly necessary for comprehension and perform the verification in a

relativised context, considering that all the derived sentences are always valid

strictly after the occurrence of the initialisation condition. We are allowed to

reason in this way provided that we refrain from using temporal logical inference

rules. Note that most of our derived inference rules are relative to the occurrence

of the initialisation condition. Relativised rules similar to those for introducing

unconstrained flexible symbols and well-founded induction can also be shown

admissible.

The two static characteristic properties of flexible well-founded relations,

irreflexivity and stability, are verified as follows:

[IRR] ∀x · ¬R(n, x, x)

Considering that ¬R(n, x, x) ↔ ¬Reach(n, x) ∨ x.nxt 6= x ∨ x.lst = T, we

sketch this proof as follows, abbreviating as CREATE(x, y) the formula ∃v ·

x.new(item, y, v) ∨ x.new(nil, y):

1. x.nil→ x.nxt 6= x ∨ x.lst = T (11.1)

2. x.item(v)→ x.nxt 6= x ∨ x.lst = T (11.2)

3. x.go ∧ (x.nxt 6= x ∨ x.lst = T)→ X(x.nxt 6= x ∨ x.lst = T) (11.5)

4. x.cons ∧ (x.nxt 6= x ∨ x.lst = T)→ X(x.nxt 6= x ∨ x.lst = T) (11.6)

5. x.link(y)↔ ∃v · x.new(item, y, v) (11.13), (11.9)

3.6. Verification of Global Properties 125

6. ∃v · x.new(item, x, v)→ ∃v · x.new(item, x, v) REFL

7. ∃v · x.new(item, x, v)→ /∃v · x.new(item, x, v) ∨ CREATE(x, x) OR-R 6

8. ∃v · x.new(item, x, v)→ XG⊥ EXIST 6, 7

9. ∃v · x.new(item, x, v)→ ⊥ 8, REFL-G, A11-X

10. ∃v · x.new(item, y, x)→ x 6= y 9, A22-EQ

11. ∃v · x.new(item, y, x)→ X(x 6= y) 10, RIGID

12. x.link(y)→ X(x 6= y) IFF-E 5, HS 11

13. x.link(y) ∧ (x.nxt 6= x ∨ x.lst = T)→ X(x.nxt 6= x ∨ x.lst = T) 12, (11.7)

14. x.nxt 6= x ∨ x.lst = T SAFE 1-4, 13

15. ¬Reach(n, x) ∨ x.nxt 6= x ∨ x.lst = T A1-I, 14, D3-OR

[STAB] ∀x, y ·R(n, x, y)→ X(R(n, x, y))

The reader is asked to work out the full proof. Here we just outline the most

important proof steps:

R(n, x, y)
(3.6.6)
→ Reach(n, x) ∧Reach(n, y) ∧ y.nxt = x ∧ y.lst = F

(3.3.1)
→ Reach(n, x) ∧Reach(n, y) ∧ y.nxt = x ∧ y.lst = F∧G(¬link(k))

INV

(3.6.1 − 5)
→ G(Reach(n, x) ∧Reach(n, y) ∧ y.nxt = x ∧ y.lst = F)

(3.6.6)
→ X(R(n, x, y))

To verify the two dynamic properties of well-founded relations, change

termination and anti-progressiveness, we have to develop a number of auxiliary

results first. We begin by showing that buffer cells reachable from n obey a

causal law which prevents them from being at the same time reachable from

and related by R to any other fixed cell (CAUSAL). Next we show that Reach

as defined in Figure 3.4 determines a transitive relation (T-Reach). We also

prove that the directed binary relation determined by R with first argument

fixed on n is acyclic (ACYCLIC). Then we proceed with the verification of

TERM and APROG.

(CAUSAL) ∀z : n · ∀y : z · ¬R(n, z, y)

First note that the following two sentences are true as a consequence of the

axioms in Figure 3.1 and 3.4:

beg → ((¬Reach(z, z))W(¬Reach(z, y)))W(∃k : n · CREATE(k, y))

beg → (¬R(n, z, y))W(y.new(item, z) ∧ Reach(n, y))

126 Chapter 3. Designing Open Reconfigurable Systems

Assume that Reach(z, y)∧R(n, z, y) is the case. Hence, k above has to be equal

to y, but in this case there would exist two actors z and y which create each

other and the resulting temporal paradox contradicts a consequence of O7a

and EXIST. Generalising the negation of our assumption to all the other cells

reachable from n clearly implies CAUSAL.

(T-Reach) ∀x, y, z ·Reach(x, y)→ (Reach(y, z)→ Reach(x, z))

We write the body of the quantified formula above as TRANS(x, y, z). This

sentence is verified using IND-begG:

1. beg→ (Reach(y, z) → Reach(x, z)) (3.6.1), NEG-L, PERM

2. beg→ ∀x, y, z · TRANS(x, y, z) 1, A1-I, HS, R5-∀

3. ∃k · CREATE(k, x)→ (Reach(x, x)→ X(Reach(x, x))) (3.6.2)

4. /∃k · CREATE(k, x)→ (Reach(x, x)→ X(Reach(x, x))) (3.6.3)

5. Reach(x, x)→ X(Reach(x, x)) 3, 4

6. CREATE(x, y) ∧Reach(z, x)→ (3.6.4)

(z 6= x ∧Reach(z, y)→ X(Reach(z, y)))
7. ¬(CREATE(x, y) ∧Reach(z, x)) → (3.6.5)

(z 6= x ∧Reach(z, y)→ X(Reach(z, y)))
8. z 6= x ∧Reach(z, x) → X(Reach(z, x)) 6, 7

9. ∀x, y, z · TRANS(x, y, z)→ X(∀x, y, z · TRANS(x, y, z)) 5, 8

10. G(∀x, y, z · TRANS(x, y, z)→ X(∀x, y, z · TRANS(x, y, z))) R2-G 9

11. ∀x, y, z · TRANS(x, y, z) IND-begG 2, 10

(ACYCLIC) ∀x, z : n · ∀y : x, w : z ·R(n, z, y)→ w 6= x

1. ∀z : n · ∀y : z · ¬R(n, z, y) CAUSAL

2. ∀z : n · ∀y · Reach(z, y)→ ¬R(n, z, y) 1

3. ∀z : n · ∀x, y ·Reach(x, y)→(Reach(z, x)→¬R(n, z, y)) 2, T-Reach

4. ∀z : n · ∀x, y · ∀w · w=x→(Reach(x, y)→(Reach(z, w)→¬R(n, z, y))) 3, A22-EQ

5. ∀z : n · ∀x, y · ∀w · Reach(x, y)→(Reach(z, w)→(w=x→¬R(n, z, y))) 4, PERM

6. ∀z : n · ∀x, y · ∀w · Reach(x, y)→(Reach(z, w)→(R(n, z, y)→w 6= x)) 5, INVE

7. ∀z : n · ∀x, y ·Reach(x, y)→∀w : z · R(n, z, y)→w 6= x 6, MOV-IF∀

8. ∀z : n · ∀x · ∀y : x · ∀w : z ·R(n, z, y)→ w 6= x 7

9. ∀x, z : n · ∀y : x,w : z · R(n, z, y)→ w 6= x 8, A1-I

[TERM] FG(∀x, y · ¬R(n, x, y)→ X(¬R(n, x, y)))

First note that substituting p1 and q by > and p2 by init123-C in both NRESP

and NCOM, we obtain as a consequence the following sentences:

init123-C → XG(FG(/∃x · x.send put, n, v ())→ FG(¬x.deliv (put, v)))(3.6.7)

init123-C → XG(FG(¬x.deliv (put, v))→ FG(¬x.put(v))) (3.6.8)

3.6. Verification of Global Properties 127

Linking these two sentences and relying on init4-C and init6-C, we obtain after

init123-C:

FG(/∃x · x.send put, n, v ())→ ∀y : n · FG(/∃x · x.send put, y, v ()) (3.6.9)

We proceed with the following derivation:

1. FG(∀v · ¬t1.rd(v)) (12.2), init3-C

2. FG(∀v · ¬t1.send tr, n, v ()) 1, (12.5)

3. FG(∀v · ¬t2.rd(v)) (12.2), init3-C

4. FG(∀v · ¬t2.send tr, n, v ()) 3, (12.5)

5. FG(∀v · ¬t1.send tr, n, v (∧)¬t2.send tr, n, v ()) 2, 4, DIST-ANDFG

6. FG(∀x, v · ¬x.send put, n, v ()) 5, init5-C

7. ∀y : n · FG(∀x, v · ¬x.send put, y, v ()) 6, (3.6.9)

8. ∀y : n · FG(∀v · ¬y.deliv (put, v)) 7, O9

9. ∀y : n · FG(∀v · ¬y.put(v)) 8, O11

10. ∀y : n · FG(∀v · ¬y.link(v)) 9, (11.13)

11. ∀y : n · FG(∀x · y.nxt 6= x ∨ y.lst = T→ X(y.nxt 6= x ∨ y.lst = T)) (11.5), (11.6)

10, INV +

12. ∀y : n · FG(∀x · ¬Reach(y, x)→ X(¬Reach(y, x))) (11.9), (11.13)

10, (3.6.5) +

13. ¬R(n, x, y)↔ ¬Reach(n, x) ∨ ¬Reach(n, y) ∨ y.nxt 6= x ∨ y.lst = T (3.6.6)

14. FG(∀x, y · ¬R(n, x, y)→ X(¬R(n, x, y))) 11, 12, 13, T-Reach

BARC-FG

[APROG] G(∀x · t = x→ X(t = x ∨R(n, t, x)))→ FG(∀x · t = x→ X(t = x))

Suppose that the antecedent of the implication above is the case but the conse-

quent of the same formula is not. This assumption implies

GF(∃x · t = x ∧X(R(n, t, x)))

As a result, since R with first argument fixed on n is acyclic, the value of t can

only forever eventually decrease. This generates a contradiction with STAB

and TERM, which say that the same relation eventually stops changing and

then relates just a finite number of mail addresses reachable from n.

Now that we know R defines a well-founded relation relative to the initial

buffer cell n, we can continue the verification of our rely-guarantee assertion

applying our relativised version of the inference rule WELL. As it turns out,

however, we are obliged to develop a number of auxiliary results to support an

application of such a rule. Since the processor is the most “active” component of

the specified architecture, we examine the properties of this actor first. We show

128 Chapter 3. Designing Open Reconfigurable Systems

below that each previously processed command can never be the non-executable

one (NEX) after the processor becomes live:

1. v = NEX→ A(¬m.rec(v)) (13.11), INVE, DUAL-AE

2. ¬m.rec(NEX) 1, REFL-A, A22-EQ

3. ¬m.exc(NEX) 2, (13.8), cmd Ax

4. m.exc(v) ∧m.prv 6= NEX→ X(m.prv 6= NEX) 3, (13.3)

5. m.prv 6= NEX→ G(m.prv 6= NEX) 4, INV

6. m.pro(n, p)→ F(m.prv 6= NEX) (13.2), (13.3)

7. FG(m.prv 6= NEX) 6, 5, init2-C, O7a

The fact that invalid commands are (eventually) never executed is impor-

tant because this is an invariant property of the processor which enables the

delivery and consumption of messages. This property allows us to show that

any executable command dispatched to the processor is eventually executed:

8. m.rec(v)→ F(m.exc(v)) (13.7)

9. m.prv 6= NEX ∧ v 6= NEX→ FE(m.rec(v)) (13.14)

10. m.deliv (rec, v)→ RESP 4, 8, 9

X(F(m.prv 6= NEX ∧ v 6= NEX)→ F(m.exc(v)))
11. XF(m.prv 6= NEX) 7, COM-FG, RPL-GX

12. m.deliv (rec, v)→ F(v 6= NEX→ m.exc(v)) 11, 10, MON-X, RIGID

13. m.prv 6= NEX ∧ v 6= NEX→ FE(m.deliv (rec, v)) (13.13)

14. ∃k · k.send rec,m, v (→) COM 4, 12, 13

X(F(m.prv 6= NEX ∧ v 6= NEX)→ F(v 6= NEX→ m.exc(v)))
15. ∃k · k.send reply,m, v (∧)v 6= NEX→ F(m.exc(v)) 11, 14, MON-X, RIGID

Another important property exhibited by the processor is that nop mes-

sages are always eventually self-dispatched and consumed. As a result, the

processor keeps requesting commands from the buffer regularly:

16. m.exc(v) ∧m.id = x ∧m.in = y → X(m.id = x ∧m.in = y) (13.4)

17. m.id = x ∧m.in = y → G(m.id = x ∧m.in = y) INV 16

18. G(m.id = m ∧m.in = n) 17, (13.1), init2-C

19. m.nop→ F(m.nop) REFL, D8-F

20. m.prv 6= NEX→ FE(m.nop) (13.12)

21. m.deliv (nop)→ X(F(m.prv 6= NEX)→ F(m.nop)) RESP 4, 19, 20

22. m.deliv (nop)→ F(m.nop) 11, 21, MON-X

23. m.prv 6= NEX→ FE(m.deliv (nop)) (13.12)

24. m.send nop,m (→)X(F(m.prv 6= NEX)→ F(m.nop)) COM 4, 22, 23

25. m.send nop,m (→)XF(m.nop) 11, 24, MON-X

26. m.nop→ XF(m.nop) 18, 25, (13.6)

27. F(m.nop)→ GF(m.nop) 26, IDEM-G, IND-G

28. GF(m.nop) 27, (13.2), init2-C

29. GF(m.send req, n,m ()) 18, 28, (13.5)

3.6. Verification of Global Properties 129

We wish to apply our well-founded induction rule using the new relation

symbol R to prove that valid commands produced in one of the two terminals

and dispatched to the buffer are eventually processed. Two other properties

are required to ensure that the connections between terminals and buffer and

between this last component and the processor present the expected behaviour:

m.send req, n,m (→)F(n.deliv (get,m)) (3.6.10)

ti.send tr, n, v (→)F(n.deliv (put, v)) (3.6.11)

The omitted verification of these properties is analogous to that of (15).

Because we know that each typed command is eventually delivered to the

buffer (3.6.11), the processor is always eventually producing new command re-

quests (29), the requests are eventually delivered to the buffer (3.6.10), and

that valid commands dispatched as a result by the buffer are eventually pro-

cessed (15), we can develop our inductive argument taking only into account the

buffer specification. We propose an inductive assertion saying that, whenever a

valid command is delivered to a buffer cell x (dind[x]) and the same cell always

eventually receives requests from the processor (rind[x]), provided that just the

processor is allowed to consume the contents of such buffer cell or its sucessor

(cind[x]), in the future either there is a cell in the buffer dispatching the newly

deposited command to the processor (qind) or there is another cell y related to x

for which the same property obtains (pind[y]). Applying our induction rule, we

reach a conclusion which, when connected to the properties mentioned above,

corresponds to our rely-guarantee assertion. We use the following abbreviations

to write our inductive assertion:

dind[x] def
= Reach(n, x) ∧ x.deliv (put, v) ∧ v 6= NEX

rind[x] def
= GF(x.deliv (get, m))

cind[x] def
= (∀y · (x.get(y) ∨ x.nxt.get(y) ∧ x.lst = F)→ y = m)W(qind)

pind[x] def
= dind[x] ∧ rind[x] ∧ cind[x]

qind
def
= ∃k : n · k.send reply, m, v (∧)v 6= NEX

In this way, our induction assertion becomes:

∀x · pind[x]→ F(qind ∨ ∃y ·R(n, y, x) ∧ pind[y]) (3.6.12)

Let us informally justify the derivability of (3.6.12). First note that, be-

cause of (11.9) and (11.10), whenever a put message is delivered and subse-

quently consumed by a buffer cell x, either the current cell is the last in the

130 Chapter 3. Designing Open Reconfigurable Systems

buffer and in this case a new one is created to store the message contents therein

or the message is forwarded to the subsequent buffer element. In the former base

case, considering that what has just been stored in the buffer is a valid com-

mand, because x is assumed to always eventually receive get messages from the

processor, according to rind[x], and can only process one such get message, by

cind[x] and the last step in the verification of (3.3.1) in Section 3.3, the first

of these messages will consume the command v or alternatively the subsequent

cell will have the same contents consumed sometime in the future, since the

next cell eventually satisfies both requirements. In either case, qind is obtained.

Otherwise, if the cell is not the last in the buffer, (11.10) guarantees that the

next existing cell y related to x will eventually satisfy pind[y]. Assuming that x

is reachable from n, it is not difficult to prove using the axioms in Figure 3.4

that n, x and y are related by R.

The application of our well-founded relation rule to (3.6.12) yields the

following sentence:

(∃x · pind[x])→ F(qind) (3.6.13)

First of all, note that pind[n] implies ∃x · pind[x]. For any v 6= NEX, (3.6.11)

implies dind[n]. In addition, rely12-C leads to cind[n] and the formula rind[n] is

a consequence of the proof step (29) above when connected to (3.6.10). Fi-

nally, qind implies post-C when connected to (11). Putting these considerations

together and reintroducing our initialisation condition, we conclude the verifi-

cation of C.

As a final observation in this section, it is worthwhile mentioning that the

necessity of using temporal sentences to establish in a (pseudo)-finitary man-

ner the well-foundedness of binary relations within first-order temporal logic

reinforces the point of view that complex dynamic data types such as lists and

queues should be treated as first class objects (Agha 1986, Milner et al. 1992).

Using our formalism, it would not be possible to perform otherwise any kind of

inductive reasoning over their structure in order to verify liveness properties.

3.7 A Plethora of Modes of Interaction

Apart from the asynchronous mode of message transmission assumed in the

actor model, components of real distributed systems may also interact through

point-to-point message passing modes which require more synchrony. Charron-

Bost et al. (1996) define a hierarchy of increasingly more synchronous interaction

modes, where FIFO communication is mentioned as an example in which the

messages exchanged between each two components must be received in the order

3.7. A Plethora of Modes of Interaction 131

�
��

�
��

�
��

6

6

6

6
�
��

�
��

�
��

�
��A
A
A
A
AAK

A
A
A
A
AK

�
�
�
�
���

�
�
�
�
��

AAK ���

6

6
Considering:
k 6= n

ackc ∼ repc

origc ∼ idc (b) sender n

n.ackc

n.deliv (ackc);

n.send c, k ();
n.send origc, k, n ()

k.deliv (idc, n);
k.c

k.deliv (c);

k.deliv (idc, n);
k.idc(n)

k.idc(n)

k.deliv (c);
k.c

(a) recipient k

k.send repc, n ()

Figure 3.5: Protocol for ensuring synchrony of reconfigurable objects.

they are sent. We show in this section that these other modes of interaction can

also be captured in terms of actors. In this way, we shall be able to conclude that

the asynchrony assumption does not really restrict expressive power in designing

open reconfigurable systems.

In order to illustrate in a direct way how to support other modes of in-

teraction in terms of the actor model, we would simply have to provide a set

of example specifications describing objects that behave accordingly. Instead,

we prefer to adopt a standard generic technique in distributed systems theory

defining transformations which, when applied to a complex description like our

architecture specification in Section 3.6, guarantee that the resulting description

ensures the required property. See Liu and Joseph (1992) for transformations

ensuring fault tolerance and Hadzilacos and Toueg (1994) for transformations in

the mode of interaction of broadcasting programs. To exemplify this technique,

we choose to address here only the full synchrony case, since the definition of

actor specification transformations may have to be quite elaborate — in the case

of FIFO communication, for example, we could choose to associate messages to

sequence numbers. Moreover, because our research is concerned only with soft-

ware design, we stick to this level of abstraction dealing with specifications as

base subject of transformation, in contrast to the programs used in the afore-

mentioned work. We also adopt the same categorical techniques of previous

sections.

132 Chapter 3. Designing Open Reconfigurable Systems

Objects that interact via asynchronous point-to-point message passing can

be transformed into synchronous ones by obliging each dispatched message to

be acknowledged and by forcing the originating object to stay in a wait state

until such an acknowledgement is received. Then, the normal behaviour can

be resumed. However, because we consider reconfigurable systems here, some

additional treatment is required to inform the recipient of each message about

the originating object mail address, to prevent the sender from automatically

deadlocking or dispatching unsolicited responses if self-addressed messages are

dispatched. One way of treating the first problem while preserving the original

specification is to force the recipient of each message to enter into an auxil-

iary state which is abandoned only if both message and originator address are

received. This behaviour is illustrated by the diagram in Figure 3.5.

We formalise the synchrony transformation in terms of actor specifications

and morphisms. This is done by defining an extension of each given signature

with the additional symbols in Figure 3.5 and each set of axioms with the syn-

chronisation properties described above. The following definition captures this

transformation:

Definition 3.7.1 (Synchrony transformation) Given a actor specification

Φ1 = (∆1,Ψ1) in obj SpecAct, a specification morphism Φ1
σ
→ Φ2 in morph SpecAct

obeying the following conditions is said to represent a synchrony transformation:

The signature ∆2 is determined by the ∆1-image under σ and the following con-

ditions:

1. Σ2 = (σ(S1) ∪ {bool}, σ(Ω1) ∪ {Tbool,Fbool,NOTbool→bool});

2. For each symbol c ∈ Γe1−eb1
, type(c) = 〈s1, . . . , sn〉, there are ackσ(c) ∈

Γ(l2−lb2)∩(e2−eb2
) and switchσ(c) ∈ Γc2 of type 〈addr, σ(s1), . . . , σ(sn)〉; and

waitσ(c) ∈ A2 such that type(waitσ(c)) = 〈addr, σ(s1), . . . , σ(sn)〉 → bool;

3. For each c ∈ Γl1−lb1
, type(c) = 〈s1, . . . , sn〉, there are {repσ(c), idσ(c)} ∈

Γ(l2−lb2)∩(e2−eb2
) and ridσ(c) ∈ Γc2 , all of these of type 〈addr, σ(s1), . . . , σ(sn)〉;

rmsgσ(c) ∈ Γc2 such that type(rmsgσ(c)) = 〈σ(s1), . . . , σ(sn)〉, and synσ(c) ∈

A2 such that type(synσ(c)) = 〈addr, σ(s1), . . . σ(sn), bool〉 → bool

4. For each c ∈ Γ(e1−eb1
)∩(l1−lb1), repσ(c) = ackσ(c).

The set Ψ2 is determined by σ(Ψ2) and the three families of axioms below.

The first of these defines the behaviour of actors playing the sender role in the

protocol description above:

(S1)
∧

c∈σ(Γe1−e
b1

)
∀~vc · n.init→ n.waitc(m, ~vc) = F

3.7. A Plethora of Modes of Interaction 133

(S2)
∧

c∈σ(Γe1−e
b1

)
∀~vc · n.switchc(k, ~vc) ∧ n.waitc(k, ~vc) = x→ X(n.waitc(k, ~vc) = NOT(x))

(S3)
∧

c∈σ(Γe1−e
b1

)
∀~vc · ¬n.switchc(k, ~vc) ∧ n.waitc(k, ~vc) = x→ X(n.waitc(k, ~vc) = x)

(S4)
∧

c∈σ(Γe1−e
b1

)
∀~vc · (n.send c, k, ~vc (∨)n.ackc(k, ~vc)) ∧ k 6= n→ X(n.switchc(k, ~vc))

(S5)
∧

c∈σ(Γe1−e
b1

)
∀~vc · n.switchc(k, ~vc)← (n.send c, k, ~vc (∨)n.ackc(k, ~vc)) ∧ k 6= n

(S6)
∧

c∈σ(Γe1−e
b1

)

d∈σ(Γl1−l
b1

)

∀~vc, ~vd · n.d(~vd) ∨ n.deliv (~vd)→ n.waitc(k, ~vc) = F

(S7)
∧

c∈σ(Γe1−e
b1

)
∀~vc · n.waitc(k, ~vc) = T→ FE(n.deliv (ackc, k, ~vc)) ∧ FE(n.ackc(k, ~vc))

The second family of axioms specifies the behaviour of actors playing the

receiver role, which is considerably more complex than the previous one:

(R1)
∧

c∈σ(Γl1−l
b1

)
∀~vc · n.init→ n.sync(k, ~vc, x) = F

(R2)
∧

c∈σ(Γl1−l
b1

)
∀~vc · n.rmsgc(~vc) ∧ n.sync(k, ~vc, T) = x→ X(n.sync(k, ~vc, T) = NOT(x))

(R3)
∧

c∈σ(Γl1−l
b1

)
∀~vc · n.ridc(k, ~vc) ∧ n.sync(k, ~vc, F) = x→ X(n.sync(k, ~vc, F) = NOT(x))

(R4)
∧

c∈σ(Γl1−l
b1

)
∀~vc · ¬n.ridc(k, ~vc) ∧ ¬n.rmsgc(~vc) ∧ n.sync(k, ~vc, x) = y → X(n.sync(k, ~vc, x) = y)

(R5)
∧

c∈σ(Γl1−l
b1

)
∀~vc · n.c(~vc) ∧ /∃k · n.sync(k, ~vc, F) = T→ X(n.rmsgc(~vc))

(R6)
∧

c∈σ(Γl1−l
b1

)
∀~vc · n.c(~vc) ∧ n.sync(k, ~vc, F) = T→ X(n.send repc, k, ~vc (∧)n.ridc(k, ~vc))

(R7)
∧

c∈σ(Γl1−l
b1

)
∀~vc · n.idc(k, ~vc) ∧ n.sync(k, ~vc, F) = T→ X(n.ridc(k, ~vc))

(R8)
∧

c∈σ(Γl1−l
b1

)
∀~vc · n.idc(k, ~vc) ∧ n.sync(k, ~vc, T) = T→ X(n.send repc, k, ~vc (∧)n.rmsgc(~vc))

(R9)
∧

c∈σ(Γl1−l
b1

)
∀~vc ·n.send repc, k, ~vc ()←n.idc(k, ~vc)∧n.sync(k, ~vc, T)=T∨n.c(~vc)∧n.sync(k, ~vc, F)=T

(R10)
∧

c∈σ(Γl1−l
b1

)
∀~vc ·n.rmsgc(~vc)←n.idc(k, ~vc)∧n.sync(k, ~vc, T)=T∨n.c(~vc)∧/∃k ·n.sync(k, ~vc, F)=T

(R11)
∧

c∈σ(Γl1−l
b1

)
∀~vc ·n.ridc(k, ~vc)∧k 6=n←n.idc(k, ~vc)∧n.sync(k, ~vc, T)=F∨n.c(~vc)∧n.sync(k, ~vc, F)=T

(R12)
∧

c∈σ(Γl1−l
b1

)
∀~vc · n.idc(k, ~vc) ∨ n.deliv (idc, k, ~vc)→ n.syncc(k, ~vc, F) = F

(R13)
∧

c∈σ(Γl1−l
b1

)
∀~vc · n.c(~vc) ∨ n.deliv (c, ~vc)→ n.syncc(k, ~vc, T) = F

(R14)
∧

c∈σ(Γl1−l
b1

)
∀~vc · n.sync(k, ~vc, F) = F→ FE(n.deliv (idc, k, ~vc)) ∧ FE(n.idc(k, ~vc))

Finally, we also need to propose a family of axioms defining the additional

behaviour of actors playing both roles in the same interaction, i.e., those actors

self-addressing a message:

134 Chapter 3. Designing Open Reconfigurable Systems

(SR1)
∧

c∈σ(Γ(e1−e
b1

)∩(l1−l
b1

))
n.send c, n, ~vc (→)F(n.idc(n, ~vc))

(SR2)
∧

c∈σ(Γ(e1−e
b1

)∩(l1−l
b1

))
n.send c, n, ~vc (→)(¬n.deliv (c, ~vc))W(n.idc(n, ~vc))

(SR3)
∧

c∈σ(Γ(e1−e
b1

)∩(l1−l
b1

))
∀~vc · n.send c, n, ~vc (←)n.sync(n, ~vc, F) = F

Let us clarify the meaning of the first set of axioms. S1 asserts that the

originator is not initially in await state, i.e. blocked. S2 and S3 say that

this state is only reached and abandoned due to the occurrence of the local

computation switchc. This computation is caused and only happens due to the

dispatch of the message c or the acknowledgement of its receipt, according to

S4 and S5. Note that self-addressed messages are excluded from this causality

relationship. S6 specifies that the wait state consists in forbidding the delivery

and processing of base specification messages. Finally, S7 asserts that it is

eventually possible to receive and process a message receipt acknowledgement

in a wait state.

The second set of axioms is similar to the previous one, but addresses more

complex situations faced by actors performing the recipient role. Recipients are

not initially in await state, which is reached if either the contents of a message

or the sender address are processed by local computations, which happen only

because of the processing of the respective messages. This is what R1-8 deter-

mine. R9-11 define the precedence conditions which hold about the occurrence

of local computations and the dispatch of replies. Note that we leave untreated

local computations dealing with the identification of self-addressed messages be-

cause in this case the recipient would also be playing the originator role and this

is to be treated by the subsequent set of axioms. R12 says that await states

are not strict, preventing only the delivery and consumption of dispatched mes-

sage identities with contents identical to previously consumed but not identified

ones. R13 states the same regarding the delivery and consumption of message

contents. R14 is the usual enabledness axiom concerning id.

To complete the specification of the synchrony protocol, we propose the

third set of axioms above. SR1 says that the dispatch of self-addressed mes-

sages implies that they are eventually self-identified using the respective local

computation. Additionally, SR2 prevents the delivery of self-addressed mes-

sages from happening before self-identification. As a result of these axioms, we

have that whatever causes the dispatch of a self-addressed message also causes

a self-identification. The remaining axiom, SR3, requires that self-addressed

messages be dispatched only if previously dispatched identical messages are to

be delivered and processed first. With this special treatment of self-addressed

messages, we prevent the components complying with the resulting specifications

3.7. A Plethora of Modes of Interaction 135

from deadlocking strictly as a result of the transformation4. It is also important

to mention that, due to the same treatment, the specification of the transfor-

mation in the form of a morphism has to be stated at the global level. This

happens because the specified extended behaviour considers that it is necessary

for each object to have knowledge about its own name. Otherwise, it would not

be possible to expect the acknowledgement of the receipt of each message. As

usually present in many object-based programming languages in the form of a

built-in object variable, the existence of a self attribute symbol in our formalism

would allow us to propose a local definition for the transformation above.

Note that, by formalising the transformation in the way above, we obtain

a method which is not fully compositional in that, if applied to each member

in isolation originating a co-limit diagram, i.e., to each given specification, the

connection of the resulting objects by a co-limit of specification morphisms would

not automatically correspond to the application of the same transformation

to the co-limit object of the whole original diagram. This happens because

some message symbols which have to be equalised by the transformation could

remain untreated, namely those related by ∼ in Figure 3.5. To confirm this in

practice, the reader is invited to apply the transformation to Component1,

Terminal and BufferCell, and to observe that not every pushout of the

transformation of Connector1 along arbitrary morphisms into the latter two

specifications after transformation equalises acktr and repput, origtr and idput.

This only happens using morphisms that conform with the translation of the base

specification symbols and translate the auxiliary ones accordingly.

Some other subtleties result from the application of the transformation

above. For instance, safety properties are not necessarily “preserved”. The

typical example is the emergence of deadlocks (Charron-Bost et al. 1996). These

may appear not only due to a misleading definition (which we have striven to

avoid in Definition 3.7.1), but also because of the specific properties captured

by the original specification. It must also be clear that, if some objects satisfy

the requirements of a transformed specification, they cannot freely interact with

an environment which does not obey the same requirements. For example, a

message which is received from an environment which never bothers to identify

the sender eventually leads to a deadlock. In other words, the transformation

reduces openness. This is not surprising: in methods wherein each message

is augmented with protocol dependent information — see (Sturman and Agha

1995) for an example — an object that does not comply with the protocol may

not have sufficient knowledge to deal with extended messages.

4Note that these components may deadlock anyway while adopting a synchronous mode of
interaction due to their inherent properties.

136 Chapter 3. Designing Open Reconfigurable Systems

Despite the limitations of our method enumerated above, it is important to

recall that it is indeed possible to represent synchronous and other less stringent

modes of interaction in terms of the actor model. An example of a synchronous

system is obtained by applying the transformation above to the specification

UTSA and by considering the resulting system as described in Section 3.6.

3.8 Actors and Dynamic Subclassing

It has become customary to consider the notion of class in object-based design.

Classes are collections of objects which obey the same definition, be it a program

or a specification5. They are normally coupled not only to a method which

permits easy reuse of definition parts, inheritance, but also to a relation between

properties of class elements, subtyping. Due to the inclusion relation between

sets, a sub-class relation is readily induced. These notions are not assumed in

the definition of the actor model, according to Wegner (1987); so, they can be

easily superimposed to produce a particularised model. Taking specifications

into account, here we may consider that actor communities are classes, the

respective specification morphisms determine relations of (possibly multiple)

inheritance and the induced notion of theory inclusion characterises subtyping.

The introduction of the notions above in the actor model does not appear

to be interesting per se. Nevertheless, it can lead to an elegant treatment of

extensibility other than just by means of object creation and reconfiguration.

Many authors including Wieringa et al. (1995) have studied dynamic notions of

class wherein objects are allowed to migrate from a class to another at run time.

This is called dynamic sub-classing. In our example concerning buffer cells, it

would be possible in this way to allow cells in the Full class to become Empty.

Formally, Wieringa et al. (1995) consider that a non-trivial dynamic partition

of a class is a collection of sets of class elements such that their union is equal to

the whole class, these sets are pairwise disjoint and, in addition, there is some

behaviour in which an object goes from one set to another, for each two such

sets in the dynamic class partition. A dynamic subclass, in turn, is a set in a

dynamic partition of a class. By allowing an object to migrate between dynamic

subclasses, it is possible to support extension (and restriction) of functionality.

In this context, let us look at our previous example in more detail. Figure

3.6 illustrates how buffer cells can be organised taking into account the notion of

dynamic subclass. There are two ways of dynamically partitioning such a class,

not only according to the empty or full character of cells but also considering

5Here we need to clarify that this is just one of the many possible definitions of class
available in the literature

3.8. Actors and Dynamic Subclassing 137

-

6T

F

TF

FULL

CELL

EMPTY

ALONE LINKED

item, cons, reply

nil

up

go, put, get

val

nxt

item, link

is a

on(lstbool)

is a

on(voidbool)

Figure 3.6: Buffer cells and related dynamic subclasses.

that they may or may not be logically linked to other similar objects. In the

picture, we represent the class and its respective subclasses using boxes, which

are divided in three regions to allow the representation of the name, attribute

and action symbols of the class. The relation of being a member of the same

dynamic partition of a class is represented using connected dashed lines, which

are joined together to express the fact that a set of dynamic subclasses is being

defined. Similar diagrams are usual in object-oriented design.

We adopt some auxiliary notation in this kind of informal software diagram

to express how an object is identified as a member of a dynamic subclass. To

this effect, Wieringa et al. (1995) use both logical class predicates and retracts

in more detailed specifications. Here, because we prefer to use our distinct

underlying formalism, we choose instead dynamic subclass selectors, which must

be provided as part of each superclass specification. We use on as a keyword

in each diagram to say which attribute plays this role. Note that each value

determining subclass membership is written as a diagram annotation in the

picture and this set of values must be in a one to one correspondence with the

dynamic classes in the partition. Some actions in the respective subclasses are

also needed to capture the events of subclass migration.

In our example, void distinguishes full from empty cells. The action cons

138 Chapter 3. Designing Open Reconfigurable Systems

@
@

@
@

@@I 6

�
�
�
�
�
��>

��
��

��
��

��
��

��
��1

�
�
�
�
�
�
�
��3

�

J
J
J
J
JJ]

HH
HH

HH
HH

HH
HHY

LinkedFullEmptyAlone

Cell

BufferCell

ι1
ι2 ι3 ι4

Figure 3.7: Static configuration of the dynamic subclasses of Cell.

is responsible for the migration of objects from one class to the other. The pair

consisting of lst and link plays the same role with respect to the partition of cells

into those which are linked or alone. In this situation, we must also treat the

birth of objects in the respective subclasses. Wieringa et al. (1995) remark that

only species, smallest classes partitioning the universe such as Full ∩ Linked,

should be assigned to creation events. In our example, such events correspond to

the occurrence of either item or nil depending on whether or not the cell is to be

full or empty. Cells are created isolated and thus the prescription to introduce

creation events only in species is fulfilled. The use of birth action symbols to

represent object creation uncovers an important issue: that objects of diverse

sub-classes may need to use the same symbol to request a birth. Since each class

has a separate specification, this can only be treated by requiring the existence

of morphisms to identify these symbols as representing the same event. For

instance, a pair of morphisms can make explicit that the action item of Linked

is the same as in the Full class. As a result, we obtain that informal diagrams

as in Figure 3.6 resemble the structure of the categorical diagram with reversed

arrows that could be used to describe the same situation. A co-limit diagram

describing this class structure can be organised as in Figure 3.7.

The formal diagram in the aforementioned figure does not make such sense

without a definition of the related specifications. These are presented in Figure

3.8. We consider that the involved morphisms are all identities. The axioms in

those specifications correspond to the properties of BufferCell, which turned

out to be captured in separated sets of axioms by the approach based on dynamic

sub-classing. Class selectors, birth and migration actions are all included in

the superclass specification. Each sub-class specification only constrains the

3.8. Actors and Dynamic Subclassing 139

Specification Cell
data types addr, bool, int (T, F : bool)
attributes void, lst, up : bool

actions nil, item(int) : local + extrn birth;
go, const, link(addr) : local computation;
put(int), get(addr) : local + extrn message;

axioms k, n : addr; v : int; x, y : bool

go ∧ void = x ∧ lst = y → X(up = T ∧ void = x ∧ lst = y) (14.1)
cons ∧ lst = x ∧ up = y → X(void = T ∧ lst = x ∧ up = y) (14.2)
link(n) ∧ void = x ∧ up = y → X(lst = F ∧ void = x ∧ up = y) (14.3)
up = T→ FE(deliv (put, v)) ∧ FE(put(v)) ∧ FE(deliv (get, n)) ∧ FE(get(n)) (14.4)

End

Specification Empty = ι2(Cell) +
axioms
nil→ void = T ∧ lst = T ∧ up = F (15.1)
nil→ X(go) (15.2)

End

Specification Full = ι3(Cell) +
attributes val : int;
actions reply(int) : extrn message
axioms n : addr, v : int

item(v)→ val = v ∧ void = F ∧ lst = T ∧ up = F (16.1)
item(v)→ X(go) (16.2)
go ∧ val = v → X(val = v) (16.3)
get(n) ∧ void = F ∧ val = v → X(send reply, n, v (∧)cons) (16.4)
send reply, n, v (∨)cons← get(n) ∧ val = v ∧ void = F (16.5)

End

Specification Linked = ι4(Cell) +
attributes nxt : addr;
axioms k, n : addr; v : int

link(n)→ X(nxt = n) (17.1)
go ∧ nxt = n→ X(nxt = n) (17.2)
put(v) ∧ lst = F ∧ nxt = n→ X(send put, n, v ()) (17.3)
get(n) ∧ void = T ∧ lst = F ∧ nxt = k → X(send get, k, n ()) (17.4)
put(v) ∧ lst = T→ X(∃n · new(item, n, v) ∧ link(n)) (17.5)
send put, k, v (←)put(v) ∧ nxt = k ∧ lst = F (17.6)
send get, k, n (←)get(n) ∧ nxt = k ∧ void = T ∧ lst = F (17.7)
∃n · new(item, n, v) ∨ link(n)← put(v) ∧ lst = T (17.8)

End

Figure 3.8: Specification of the distinct dynamic subclasses of Cell.

140 Chapter 3. Designing Open Reconfigurable Systems

properties of the symbols that appear inside the respective boxes in Figure 3.6.

We are obliged to choose this structure for specifications of the class hierarchy

by the logical properties of our underlying model. It is important to emphasise

that because of the locality property, an object in a specific dynamic class may

only change the object attributes specified in the respective class description.

Since dynamic subclasses must not be defined at run time but at the time of

system description, we see that the advantage dynamic sub-classing appears to

offer is the modularisation of component descriptions. Since the actor model

can already deal with the notions of state and change, we can simply capture

this other dynamic notion by adopting a specific design discipline.

3.9 Summary and Related Work

In this chapter, we have particularised the logical system previously proposed in

order to support the design of open reconfigurable systems in a more faithful way.

We chose to provide built-in support for the actor model, which captures both

openness and reconfigurability. The structure of each signature was specialised

to cater for the finer distinctions between the families of symbols present in

each actor specification. A set of logical axioms was proposed to capture such

distinctions in meaning and to pose additional constraints in the specified object

behaviour. We also defined a syntactic way of composing actor specifications

through the same categorical constructions studied in the previous chapter. A

rely-guarantee discipline supporting the verification of dynamic properties was

established. An example was used to illustrate local and global reasoning.

The use of additional logical symbols to represent complex object be-

haviour is not new. Ehrich et al. (1988) introduced the idea of adding a new

argument in each signature symbol to represent object identity. Wieringa et al.

(1995) used additional flexible symbols to represent classes and object existence.

As an alternative to both techniques, we could have adopted sort symbols with

a flexible meaning, at the expense of using a substantially more complex un-

derlying temporal logical system. In any case, the introduction of such logical

symbols and the use of a set of abbreviations appears to be the best choice

when we consider that unique identification of objects and messages has to be

supported without loosing our intuitions about the actor model.

In the literature on actors, we can find plenty of examples on rigorous

approaches to the model. Talcott (1996a) provides an operational semantics for

actors defined in terms of the application of rewriting logic rules. The inference

rules of linear logic play the same role in the work of Darlington and Guo (1995).

3.9. Summary and Related Work 141

The detailed operational semantics in (Agha et al. 1997) is defined in terms of a

transition relation on actor configurations. All these works appear to deal with

the semantics of actor programs only. The early studies of Hewitt and Baker

(1977) and of Clinger (1981) were entirely semantic. So, our work seems to be

the first to deal with the formal design of open reconfigurable systems based on

this model. The means to support actor specification and verification appear to

be the main contribution of this chapter.

Openness and reconfigurability have been addressed in the recent litera-

ture, receiving special attention from those who advocate an object-based ap-

proach to software design. Fiadeiro and Maibaum (1992) and also Sernadas

et al. (1995) capture openness in a static object configuration setting considering

that each specified event may occur in parallel to other events of the environ-

ment. This semantics for action symbols was adopted here as well. America

and de Boer (1996) develop an extensive study of dynamically reconfigurable

synchronous object communities and provide methods for reasoning about their

properties. To support the proof of global properties, in particular, a cooper-

ation test written at the global level has to be proved. Here, on the contrary,

because interaction is always asynchronous, the decision as to when to accept

a message is purely local. Abadi and Leino (1997) propose a Hoare logic of

object-oriented programs. Note that Hoare logics are usually endowed with a

set of inference rules supporting the verification of general conclusions from par-

ticular assertional premises, which are solely based on the state of the system

in a single (pair of) instant(s). Here, we have adopted a distinct strategy with

our derived inference rules, which prioritises instead the separation of properties

pertaining to the distinct objects involved in each interaction. This appears

to facilitate the development of proofs taking only into account their possibly

separated specifications, thus reducing the proof search space.

A number of methods supporting a rely-guarantee discipline has already

appeared in the literature with the aim of supporting the design of open systems.

Pandya and Joseph (1991) develop in the realm of synchronous process calculi

a theory which appears to be the closest to our work. Other related work can

be roughly divided in process or model based formalisms (Jones 1983, Cau and

Collete 1996) and logical ones (Pnueli 1985b, Collete 1994, Abadi and Lamport

1995, Jonsson and Tsay 1995). Unfortunately, in the latter recent work, many

distinct levels of abstraction are discussed without a clear boundary, due to

the influential view that implication coincides with refinement, as advocated by

Abadi and Lamport (1995). In this latter category, only two kinds of assertions

representing assumptions and commitments are considered. All these works

142 Chapter 3. Designing Open Reconfigurable Systems

allow the use of arbitrary safety properties but just a few consider the occurrence

of liveness properties as a normal part of commitment assertions. In our work,

both families of properties are treated uniformly as any part of rely-guarantee

assertions. In particular, the use of the connectives unless and until to relate

past and future relieve us from adopting the more demanding semantic closures

and history variables in the application of composition rules. On the other hand,

we have not studied in detail yet how to treat hidden flexible variables.

In order to provide evidence that there is no loss of expressiveness by

adopting the asynchronous actor model in the design of open reconfigurable

systems, we exemplified how object descriptions can be transformed into con-

strained specifications which force the behaviour of each system to comply with

a synchronous mode of interaction. Agha et al. (1994) also discuss a number

of higher-level abstractions defined in terms of the actor model, including the

treatment of less asynchronous interaction modes. In particular, synchronisa-

tion constraints are treated, which permit the receipt of a message to be delayed

until the object is in a state where it is possible to proceed with the processing

of the message. Note that this is specified here in a way similar to (13.11),

by relating the possible delivery or consumption of a message using our modal

possibility connective to the local state of the object and the message contents.

There is a clear advantage in using such constraints in relation to a synchronous

mode of interaction, namely that they do not block the sender. The same ap-

plies to the call/return abstraction described in that work. Note that there is

a fundamental distinction between these abstractions and the use of our syn-

chrony transformation: they are to be used by designers and programmers as

part of actor behaviour descriptions whereas transformations of the kind studied

here consider that such descriptions have already been produced. Further work

related to such transformations is proposed in Chapter 6.

We also made a digression concerning the use of dynamic subclasses as

an object-oriented approach to support extensibility. We showed that, because

the actor model can capture state and change, dynamic subclasses can also be

designed in terms of this model by a specific design discipline which leads to

more modular specifications. Because change is normally causally connected to

the occurrence of interaction here, which in turn usually eventually happen due

to the format of the axioms necessary in each actor specification, we obtain a

design notion which complies not only with the definition of dynamic subclass

but also with our definition of extensibility in Chapter 1. Our work differs in a

few points from that described by Wieringa et al. (1995). First of all, interaction

is not discussed therein. Also, because our underlying model supports unique

3.9. Summary and Related Work 143

object identification, this does not need to be treated in the study of dynamic

subclasses. Finally, we do not require that class migration be irreflexive: here an

object may migrate to the same class it currently belongs to. In this way, class

migration coincides with the intended meaning of the actor primitive become.

144 Chapter 3. Designing Open Reconfigurable Systems

Chapter 4

Reflection and the Design of
Meta-Level Architectures

The open reconfigurable system abstraction is useful to support the design of

software systems in the small. Recently, however, the trend has been to pay more

and more attention to the overall organisation of the components of each sys-

tem and their interrelationships, classifying the distinct ways in which they are

designed, organised and evolve over time with the aim of providing automated

development tools and supporting reuse. The branch of Software Engineering

concerned with these issues is called software architecture (Garlan 1995).

Conventional architectural styles have been identified in existing systems

and have guided new designs. Examples are the client-server and pipe-and-filter

styles. The most non-conventional style is perhaps that of meta-level architec-

tures. A meta-level architecture is one wherein there is a clear separation of

components into base-level objects, which are devoted to solving a problem in

the application domain, and meta-level objects, which deal with the base-level of

the architecture itself — its configuration, operational behaviour and the way it

is used to accomplish the main purpose of the system. This separation may be

iterated to identify many (possibly unrelated) meta-levels in the same architec-

ture. Meta-level objects are useful in applications such as memory management,

debugging, fault detection and recovery. Particularly in the context of concur-

rent and distributed systems, this separation is important in such activities as

scheduling, load balancing and task migration. In this way, meta-level objects

do not directly deal with the problem domain, but help in establishing a better

organisation of the system, as observed by Simhi et al. (1996).

When the meta relation is recursively iterated, architectures complying

with a distinguished style are obtained. Reflective architectures realise compu-

tational reflection. Maes (1987) characterises computational reflection as the

activity performed by each component when doing computation about its self,

145

146 Chapter 4. Reflection and the Design of Meta-Level Architectures

possibly affecting its own behaviour. In a reflective system, the meta-levels are

represented by an interpreter and there is a causal connection between system

description and its behaviour: whenever the description changes, the behaviour

changes as a result and each modification in behaviour is preceded by a descrip-

tion change. Programming and specification languages are said to be reflective if

reflection is explicitly supported by specific language constructs. In the former

case, such languages are said to have an underlying reflective architecture.

Many authors have studied the design of meta-level and reflective archi-

tectures. Simhi et al. (1996) propose a technique based on state transition dia-

grams to enhance the design of reflective objects. Tahara et al. (1996) introduce

an algebraic semantics for reflective objects based on an extension of rewriting

logic (Meseguer 1992). Saeki et al. (1993) propose a reflective extension of the

specification language LOTOS. Clavel and Meseguer (1996) study reflection in

a general logical setting and show that the executable specification language

Maude, which is based on rewriting logic, fulfils the conditions to be reflective.

It is important to stress that the research mentioned above is mostly con-

cerned with the design of meta-level and reflective architectures. In logic, meta-

theoretic facilities have also been studied without any required connection with

a notion of computation. Such theoretic study involves axiomatising a given

provability relation and this allows one to use the logical language to talk about

the logical system itself. This is why such facilities are said to be introspective.

Attardi and Simi (1991), Basin and Matthews (1996) pursue this line of research.

The confusion between the presence of meta-level or reflective facilities at

the architectural level and in the logical system used for design is just one of the

many points that has remained rather unclear concerning these notions. Most

authors do not distinguish meta-level from reflective architectures as Venkata-

subramanian and Talcott (1993) do. Moreover, it is not clear in many situations

if these are required or even desirable notions. On the other hand, both notions

are clearly helpful in ensuring extensibility due to the possibility of providing

extended base-level functionality as a result of meta-level behaviour.

In this chapter, we first show that the assumption of meta-level architec-

tures is reasonable in the design of open reconfigurable systems as formalised in

the previous chapter. We base our rationale on the impossibility of solving the

consensus problem in asynchronous systems that admit crash failures (Fischer

et al. 1985). Next, we define a discipline that permits the design of meta-level

architectures. Finally, we argue that the assumption of reflective architectures

is not compatible with systematic software development due to the impossibility

of relying on constantly changing specifications for verification and refinement.

4.1. Meta-level Considered Necessary: The Consensus Problem 147

4.1 Meta-level Considered Necessary: The Con-

sensus Problem

In this section, we show that the assumption of meta-level architectures is rea-

sonable in the design of open reconfigurable systems as formalised in the previous

chapter. To reach this conclusion, we use the consensus problem, which involves

a set of processes which may individually fail but have to agree on the same

binary value otherwise. This is just an abstraction of many practical problems

such as distributed transaction commitment. Fischer et al. (1985) show that it

is impossible to find an implementation that solves this problem in a completely

asynchronous setting admitting at least one unreliable process.

Many distinct types of failure are studied in the design of fault-tolerant

systems. Message loss is the most typical example in a message passing mode

of interaction. The consensus problem is impossible in the presence of crash-

failures (also known as fail-stop failures) or more severe ones such as Byzantine

failures, which may be followed by an arbitrary object behaviour, even in an

ideal reliable network that guarantees message delivery. This last property is

ensured by our axiomatisation of the actor model. On the other hand, due to

our decision to make weaker assumptions than those of perfect message buffering

in our axiomatisation, here it is possible to represent crash-failures as required

in any attempt to deal with agreement problems.

The many processes of a system involved in reaching distributed agree-

ment are assumed to hold an initial boolean value and to interact solely by

asynchronous message passing. For any such an agreement system to be cor-

rect, the following properties are required to hold:

Termination: Every non-faulty process eventually decides some value;

Agreement: Each pair of non-faulty processes decides the same value;

Integrity: Every process decides at most once;

Validity: If a process decides a value, it was the initial value of some process.

Note that integrity is local whereas the other ones are global properties of the

system. Weaker formulations of the consensus problem also yield an impossibil-

ity result, but for our illustrative purposes the formulation above suffices.

Due to the general nature of the problem, it appears to be more prof-

itable to attempt a general treatment here. In order to represent agreement

processes, we use presentation schemas, which differ from theory presentations

just because the signature symbols are left partially unspecified and the stated

148 Chapter 4. Reflection and the Design of Meta-Level Architectures

Specification UnrelProc
data types Ω ∪ {addr, bool (T, F : bool)}
attributes A∪ {failed : bool}
actions Γlb : local birth;

Γeb
: extrn birth;

Γc ∪ {fail} : local computation;
Γl−lb : local message;
Γe−eb

: extrn message

axioms x : bool, n : addr

fail→ failed = F (18.1)
fail→ X(failed = T) (18.2)
∧

c∈Γc

∃~vc · c(~vc) ∧ failed = x→ X(failed = x) (18.3)

∧

b∈Γeb

∃n, ~vb · new(b, n, ~vb)→ failed = F (18.4)

∧

b∈Γlb

∃~vb · b(~vb)→ failed = F (18.5)

∧

c∈Γc

∃~vc · c(~vc)→ failed = F (18.6)

∧

c∈Γl−lb

∃~vc · deliv (c, ~vc) ∨ c(~vc)→ failed = F (18.7)

∧

c∈Γe−eb

∃n, ~vc · send c, n, ~vc (→)failed = F (18.8)

End

Figure 4.1: Schematic specification of unreliable processes.

sentences may be schemas and not just axioms as usual. Whenever we refer

to one such schematic presentation, we are in fact making reference to all the

theory presentations which have a signature and a set of axioms complying with

the specified syntactic pattern. In addition, each morphism connecting a source

to a target schematic presentation is assumed to represent a family of morphisms

relating the respective theory presentations which also respect the translation

of the source axiom schemas.

Our schematic presentation of unreliable processes appears in Figure 4.1.

Each process is endowed with distinguished local computation and boolean at-

tribute symbols, fail and failed respectively, which represent the occurrence of

a failure and the unreliable state reached as a result of this occurrence. Axiom

(18.1) says that failures can occur only in reliable states. Moreover, an unreli-

able state is reached as a result of such an occurrence and only then, according

to (18.2) and (18.3). Schema (18.4) specifies that only initially reliable processes

are admissible. The other axiom schemas in the presentation determine that it

is impossible for the process to witness the occurrence of local events after the

4.1. Meta-level Considered Necessary: The Consensus Problem 149

Specification UnrelAgmProc = ι(UnrelProc) +
attributes initial, decision, decided : bool; known : addrn (n ∈N)
actions decide(bool) : local computation

axioms x, y : bool;~k : addrn

∃x · decide(x)→ decided = F (19.1)
decide(x)→ X(decision = x ∧ decided = T) (19.2)
∧

c∈Γc

∃~vc · c(~vc) ∧ decision = x ∧ decided = y → X(decision = x ∧ decided = y) (19.3)

∧

c∈Γc

∃~vc · c(~vc) ∧ initial = x ∧ known = ~k → X(initial = x ∧ known = ~k) (19.4)

∧

b∈Γlb

∃~k, ~vb · b(~k, ~vb)→ decided = F ∧ initial = decision ∧ known = ~k (19.5)

End

Figure 4.2: Schematic specification of unreliable agreement processes.

occurrence of a failure. This means that we are dealing with crash failures.

The processes that attempt to reach distributed agreement in any system

are considered to be unreliable in the precise sense specified above. We represent

this fact through a morphism ι connecting the schematic specification of unreli-

able processes UnrelProc to that of agreement processes UnrelAgmProc.

Apart from the symbols dealing with the occurrence of failures, the language of

agreement processes is also required to contain symbols to treat the occurrence

of a decision, decide, the value initially proposed by the process, initial, and

the possibly agreed boolean value, decision. As in the case of failures, we also

adopt a boolean attribute decided to denote whether or not a decision action

has already happened. Furthermore, a list of processes which is known to be

attempting to reach agreement is kept as the value of the attribute known. The

(schematic) axioms in Figure 4.2 are similar to those specifying the occurrence

of failures. We need to stress at this point that many other presentations would

also be suitable to deal with the consensus problem — what is important in

this situation is the set of properties enjoyed by the specified objects — but we

prefer the presentation above to facilitate our exposition.

Now we can formalise the dynamic nature of the problem. Upon proper

initialisation, the four properties listed above are required to hold. The safe part

of these properties may be formally stated as follows:

Init(~k, ~n):
∨

b∈Γlb

∀i · ∃n, ~vb · n.new(b, ki, ~k, ~vb) ∧

∧

c∈Γe−eb

XG(∀l · ∃i, ~vc · l.send c, ki, ~vc (→)∃j · l = nj);

(Initialisation)

150 Chapter 4. Reflection and the Design of Meta-Level Architectures

Term(~k): ∀i · ki.failed = F→ ki.decided = T; (Termination)

Agm(~k): ∃v · ∀i · ki.failed = F→ ki.decision = v; (Agreement)

Integ(~k): ∀i · ∃v · ki.decide(v)→ XG(/∃v · ki.decide(v)); (Integrity)

V al(~k): ∀i, v · ki.decision = v → ∃j · kj.initial = v. (Validity)

Using the formulas above and the logical properties of actors, the consensus

problem can be formulated as the validity of the following liveness property, for

each ~k such that len ~k ≥ 2 and each ~n :

Init(~k, ~n)→ F(Term(~k) ∧ Agm(~k) ∧ Integ(~k) ∧ V al(~k)) (4.1.1)

Note that this sentence may be obtained as a result of reasoning according to

the rely-guarantee discipline described in the previous chapter.

The solution of the problem above clearly depends on the particular set

of properties specified as part of each presentation. Fischer et al. (1985) gives

a semantic proof that there is no solution if the mode of interaction is purely

asynchronous. However, we cannot guarantee that this is the case using only the

previous schematic presentations, since even completely synchronous communi-

cation can be specified in terms of asynchronous message passing, as illustrated

in the preceding chapter. On the other hand, a totally synchronous solution

based on our schematic presentations obtained via an application of our syn-

chrony transformation is also impossible as a target process failure would imply

in a source process deadlock in any communication. Many partial synchrony

solutions, which depend on fine grain decisions concerning the adopted mode

of interaction, are studied by Dolev et al. (1987). Despite these deterministic

solutions, if all the processes in the system may fail and there is no synchrony

involved, the problem is impossible. In these circumstances, a solution based

solely on the actor model cannot be proposed.

One elegant way of hiding the fine grain decisions concerning the mode of

interaction between agreement processes is the assumption of failure detectors as

proposed by Chandra and Toueg (1996). Each process is assumed to have access

to a local failure detection object. Such objects keep a list of processes that are

suspected to have failed, which is dynamically updated by inclusion or removal.

Failure detectors can make mistakes but are required to obey some completeness

and accuracy properties demanding, for instance, that eventually every process

that crashes is always suspected by some reliable process and that some reliable

process is eventually never suspected by any of the processes that do not crash.

A number of failure detectors can be proposed obeying these properties.

4.2. The Design of Meta-Level Architectures 151

Note that failure detection objects are not assumed to crash. This distinc-

tion between objects that may and may not crash, together with the assumption

that failures are to be detected amongst the set of given processes, establishes

a separation of the involved system components into base-level and meta-level

objects. Note that failure detectors are about the system itself. In this way, they

are not to have any connection with the problem domain, naturally belonging to

a meta-level of the system. Because some abstraction similar to failure detectors

is required in order to hide the underlying mode of interaction and this can be

captured in terms of meta-level architectures, it seems that it is reasonable to

consider the latter notion as necessary in the design of extensible systems. In

the next section, we propose a novel way of designing meta-level architectures.

4.2 The Design of Meta-Level Architectures

The central point in designing meta-level architectures is to draw an explicit

boundary between base-level and meta-level functionality. This separation of

what concerns the problem domain and the system itself is normally accom-

plished stating a set of non-interference properties. Saeki et al. (1993), for

instance, requires that base and meta-level objects do not communicate explic-

itly. Venkatasubramanian and Talcott (1993) require that meta-level objects

communicate with each other via message passing but manipulate base objects

as data structures. This kind of organisation is illustrated in Figure 4.3.

Each object in the base-level is associated to some meta-level object wherein

base-level state and events are represented. This gives the meta-level access to

the features of the base-level, which in our case includes the hidden part of the

state related to message buffering. The hidden state of the respective objects

is represented as the dark parts of Figure 4.3. Meta and base level are also

required to be aware of the mail addresses of each other and this enables their

interaction.

We formalise the previous intuition about the representation of base-level

information in the meta-level through the following definition:

Definition 4.2.1 (Base-level representation) Given actor specifications Φi

= (∆i, Ψi), i ≤ i ≤ 2, Φ2 is said to represent a meta-level of Φ1 if there is a

specification morphism Φ1
τ
→ Φ2 such that:

1. τ maps attribute and actions of ∆1 into ∆2, i.e., associates to pairs of

distinct symbols in each of these families of ∆1 pairs of distinct ∆2 symbols;

2. there are flexible terms metaτ ∈ Term(∆1)addr and baseτ ∈ Term(∆2)addr

such that τ(metaτ) 6= baseτ ;

152 Chapter 4. Reflection and the Design of Meta-Level Architectures

metab

?

..................................

6

....

....

....

....

....

....

....

....

....

..

b
baseWC

C
C
C
C
C
CO

��
�
�
�
�
�
��

�

....
....
....
....
....
...

I

R....
....

....
....

....
....

...

�

....
....
....
....
....
...

I

R....
....

....
....

....
....

...

base-level

meta-level

Figure 4.3: Relationship between base and meta-level objects.

3. Φ2 ` τ(p) iff Φ1 ` p for each p ∈ Φ1 ∪ AxΦ1 .

Given the morphism τ , we say that τ represents the base-level Φ1 in Φ2.

The requirement that representation morphisms be injective on attribute and

action symbols in (1) captures the intuition that the architecture meta-level

keeps a full representation of all the behavioural characteristics of the base-level.

In order to allow unlimited access to base-level information in the meta-level, as

previously described, we also have to lift the restriction that some symbols in

the base-level representation are hidden. Condition (2) is to guarantee that base

and meta-level objects can be made aware of the mail address of each other and

the representation process does not preclude these objects from being distinct,

having different mail addresses. The last condition (3) says that the properties

of each object are the same when observed from either level of the architecture.

Base-level representation just ensures that it is possible for base and meta

levels to co-exist in the same system. To guarantee that this certainly happens,

we also need to make some assumptions on the way objects fulfilling each of

these roles are related:

4.2. The Design of Meta-Level Architectures 153

Definition 4.2.2 (Meta-relation) Given actors denoted by {x, y} ⊂ Vaddr

and specifications Φi = (∆i, Φi), 1 ≤ i ≤ 2, such that Φ2 represents the

meta-level of Φ1, y in the Φ2-community is said to be a meta-level object of

the base-level object x in the Φ1-community if for some τ representing Φ1 in Φ2:

1. x 6= y;

2.
∧

f∈A−Ai

∀k, ~vf ·x.f(~vf) = k ↔ y.τ(f)(~vf) = k and
∧

c∈Γ−Γlb∪inb

∀~vc ·x.c(~vc)↔ y.τ(c)(~vc);

3. x.τ(metaτ).baseτ = x and y.baseτ .τ(metaτ) = y.

The first condition prevents that the same base-level object be related to itself as

part of the meta-level. The second one says that meta-level objects simulate the

behaviour of their base-level counterparts. This is quite a strong requirement.

For instance, it implies that identical messages are always dispatched to base and

meta-level objects. There are ways of making this requirement more reasonable

by increasing the amount of sharing allowed by the formalism — it may be

possible to consider that the same message, with the same identification, is

dispatched to both base and meta level — but we prefer to leave this treatment

unspecified in order to deal with the problem in an abstract manner. Due to our

mutual exclusion assumptions, the previous requirement also implies that meta-

level objects will present some independent behaviour only when their respective

base-level is inactive. Finally, the third condition says that base and meta-level

objects know the mail addresses of each other. From the definitions above, we

see that, to design meta-level architectures, we have to split the design in two

parts as usual: a pair of specifications related by meta-representation is proposed

and two existing objects are assumed to be always meta-related.

Note that, given a representation morphism, the assumption that two ob-

jects are meta-related can be stated using a finite conjunction of formulas. That

the two objects exist and belong to distinct communities is simply ensured by

relating the occurrence of their birth actions. The conditions (1-3) above are

all stated in terms of single formulas. Therefore, it is feasible to write such a

finitary conjunction as part of a rely-guarantee assertion.

Also note that our definitions are quite permissive concerning multiple

connections between base and meta levels. For instance, it is possible that the

same base-level object be directly related to several distinct meta-level objects.

What is necessary to determine this situation, apart from the respective as-

sumptions, is a set of representation morphisms, each requiring the existence of

a distinct meta attribute. On the other hand, it is possible for the same meta-

level object to represent several base-level objects. This happens because the

154 Chapter 4. Reflection and the Design of Meta-Level Architectures

attribute symbol base is not required to be in the image of any representation

morphism. In this way, the same meta-level specification can determine many

such attributes which are related to the respective base levels through their rep-

resentation morphisms and the corresponding assumptions. Furthermore, by

chaining these static and dynamic relationships, a finite hierarchy of meta-levels

can be specified as part of the same system.

Let us return to the consensus problem. We sketch in what follows a

solution based on the rigorous discipline proposed above. Our solution requires

that the meta-level of each object, that is the respective failure detector, knows

the meta-level address of all the other processes attempting to reach agreement.

This is achieved by requiring that each of the n agreement processes broadcasts

the mail address of its meta-level object just after the occurrence of the respective

birth action. Note that some of these messages may never be received since some

failures may happen first. We also require that the interaction between a process

and its local failure detector be synchronous and make the assumption that meta

and base-level objects communicate only among themselves.

Each failure detector operates in asynchronous rounds, whose steps are de-

termined by the consumption of self addressed messages. Each failure detector

automatically knows if its process failed or not, due to our construction giving

base-level access to these meta-level objects, and is always eventually enabled

for delivery of any message pertaining only to the meta-level. At the end of

each round, the failure detector updates its list of suspects with the information

possibly received by other detectors and broadcasts to all the other failure de-

tectors the list of processes known to have crashed. In this way, the information

provided by each of these objects is always correct and accurate.

The agreement processes themselves also operate based on asynchronous

rounds and keep lists of values that are known to be initially proposed by each

process. In the beginning, this list contains only the value proposed by the

local process. After n − 1 rounds, wherein proposed values are broadcast and

propositions from all processes that are not suspected are awaited, each process

that has not crashed will be aware of a list of initially proposed values. During

each round, the list of suspected processes is dynamically updated to reflect

information provided by the local failure detector. In a second stage, the list

kept by each process is broadcast and every received list is used together with

the local list to compute a least common denominator that will replace the latter

list. Again, the list of suspects is updated while new lists of values are expected.

After this stage, there will be agreement on the list of proposed values among

the processes that have not crashed. Finally, each reliable process decides the

4.3. Computational Reflection 155

first value of this list. The system clearly reaches consensus after this procedure.

The solution above is essentially that proposed by Chandra and Toueg

(1996), particularised with our specification of failure detectors derived from the

assumed meta-level architecture. Therein, a proof can be found that property

(4.1.1) is valid considering these assumptions.

4.3 Computational Reflection

The assumption of meta-level architectures is extremely powerful. Even with-

out making reference to the hidden symbols in the representation of base-level

objects, to solve the consensus problem in the previous section we could design

perfect failure detectors, in the sense that they are always correct, accurate and

never make mistakes. Therefore, it appears to be natural to ask ourselves if the

assumption of reflective architectures would be even more desirable.

This question may be given two answers. Considering that we are inter-

ested in extensible systems, reflective architectures are certainly desirable since

they permit behavioural changes of system features at any architecture level.

For instance, in a reflective text editor like Emacs (Stallman 1981), it is possible

to extend the system providing not only a new way of cutting and pasting text

based on menus, apart from keystroke commands, but also new ways of making

this extension, through forms or changing a configuration file, to mention a few

possibilities, and this chain of extensions could be infinitely iterated.

On the other hand, if we consider our interest in systematic software de-

velopment, it does not make sense to assume reflective architectures. It would

be impossible to prove any non-trivial safety property concerning the previously

mentioned reflective text editor, for instance that the editing session is not ter-

minated unless the text is saved first, because this and other properties would

depend on the extensions performed at run time. Such extensions would have

to be reflected in the specification of the system itself. It would also be im-

possible to define a non-trivial satisfaction relation between such specifications

and programs because the programming language would have to be reflective

as well. Therefore, the assumption of reflection is inappropriate in systematic

software development. This has already been identified by Agha et al. (1993),

for instance. We need to clarify, however, that designing a reflective architecture

is different from assuming the existence of one such an architecture in the de-

sign of a distinct system: the design of a reflective architecture does not need to

assume the existence of one such an architecture. In the realm of programming

language design, this has already been shown by Wand and Friedman (1988).

156 Chapter 4. Reflection and the Design of Meta-Level Architectures

Part of the argument above can also be explained in terms of our formal

definitions in the previous section. Reflective architectures are those where the

chain of meta-levels is not finite. In this way, to give formal treatment to the

assumption of such an architecture, we would have to provide an infinite number

of morphisms connecting each pair of architecture levels and write an infinitary

conjunction of assumptions of meta-related objects. This is clearly impossible

using the finitary first-order logical systems studied in this thesis, but may not

represent a problem if an infinitary logic based on Lω1ω, say, is adopted.

4.4 Summary and Related Work

In this chapter, we have argued that the assumption of meta-level architectures

should be considered necessary in the design of extensible systems. Through an

example, we showed that meta-level architectures provide a direct and elegant

solution to a specific problem which otherwise demands fine grain decisions con-

cerning the mode of interaction between objects and is in some cases impossible.

We proposed a design discipline that treats this assumption. We also argued

that the assumption of reflective architectures is not compatible with the notion

of systematic software development.

Maes (1987) was the first to propose a systematic study of computational

reflection and to develop a reflective object-based programming language. Agha

(1997) recognised the need of more expressive formalisms to deal with meta-level

architectures. Venkatasubramanian and Talcott (1993) established a clear dis-

tinction between meta-level and reflective architectures, which we have followed,

and developed semantic methods for reasoning about such architectures. The

latter work is based on the actor model, as is our case.

Saeki et al. (1993) extended the specification language LOTOS with reflec-

tive facilities. In particular, the restriction that base-level representation must

focus just on behavioural aspects of the system was reflected here in Definition

4.2.1 through the requirement that attribute and action symbols be fully rep-

resented. Simhi et al. (1996) proposed the use of state transition diagrams to

enhance the design of reflective objects. Both works contrast with our view that

reflection is not compatible with systematic software development and software

design in particular.

It is also interesting to mention that all the work on distributed consensus

has been developed in a semantic way (Fischer et al. 1985, Dolev et al. 1987,

Chandra and Toueg 1996). Our formalism and discipline appear to provide a

suitable proof-theoretic framework for dealing with this and related problems.

Chapter 5

Case Study: Location
Management for Mobility

We are currently facing a radical change in the way users interact with software

systems and in the underlying distributed software architectures. Thanks to

the advent of technologies like cellular phones, personal digital assistants and

active badges, users are no longer required to go to specific access points to

take advantage of some locally provided functionality. Such devices have be-

come increasingly more personal and can be carried by their owners. In turn,

the respective software systems may now be used at any time and place, and

can provide location dependent functionality such as ubiquitous message deliv-

ery, transportable user sessions and others (Harter and Hopper 1994). Software

components which implement these features are identified by end users as ex-

tending the functionality provided at their current location. What is essentially

novel in this completely new kind of operational environment is the very pres-

ence of mobility. The way to support the new requirements related to mobility

is to manage location information.

The need to manage location information and mobility brings with it new

problems to be addressed in the design of distributed systems. The autonomy

and heterogeneity presented by mobile objects make it not only difficult but

virtually impossible to account for many interesting features required in real

implementations as part of any design. Moreover, to ensure that these sys-

tems are open, characteristics that depend on the current technology need to

be abstracted away. In this context, specifications have to be supported by a

formalism which is expressively rich enough to represent the remaining prop-

erties. VDM (Jones 1990) and Z (Spivey 1989), for instance, do not address

at all the inherent concurrency of mobile systems. In some other cases, con-

currency is actually treated but the development process is organised in terms

of notions like processes (Milner 1983) or programs (Chandy and Misra 1988,

157

158 Chapter 5. Case Study: Location Management for Mobility

Wilcox and Roman 1996), which certainly provide important insights on how an

implementation should work but poorly support understanding and representing

the problem domain in an organised manner. The use of object-based notions

like attributes, actions and encapsulation as studied in the previous chapters

seems to bridge this gap, but even then expressibility concerns arise since the

basic notion of mobility has to be captured.

We have chosen as a case study in this chapter the design of a particular

location management architecture for networks of mobile users and devices, as

originally sketched in (Duarte 1997a), to illustrate in a more realistic situation

the application of our formalism and design discipline. For simplicity, we ignore

the important issues of dependability, authenticity and security (Spreitzer and

Theimer 1994), concentrating just in the management of location information.

We also abstract away many details that are essential to ensure reasonable per-

formance (Lam et al. 1996). In the next section, we informally describe the

requirements of location management applications. We then devote two sec-

tions to their design, namely their specification and verification. We conclude

this chapter providing a comparison with related work.

5.1 Location Management: Requirements

A central problem in designing and implementing software systems for networks

of mobile users and devices is how to manage distributed object locations. An

extensive description of the problem can be found in the literature (cf. Harter

and Hopper 1994, Leonhardt and Magee 1996, Spreitzer and Theimer 1994).

In this section, we provide an informal list of requirements strictly imposed by

mobility. In the next section, we discuss some design decisions based on this list

and propose a formal specification for the corresponding mobile architecture.

We can classify the requirements for managing distributed object locations

into three families, the first concerning the nature of location information and

located objects, the second about the process of acquiring location information

and the third on how to deal with it. In what follows, we provide a partial list

of functional requirements:

1. Location information must be dynamic, in the sense that, at each time, it

may be a distinct instance of a class1 of objects;

2. Location information must be mutable, in the sense that, at each time, it

may be an instance of a distinct class of objects;

1Here we consider the word class in a loose sense, just as a set of objects.

5.2. Location Management in a Formal Setting 159

3. Located objects may be users or devices, at least;

4. Location information acquisition must be unintrusive, which means that

the acquisition process cannot intrude user behaviour nor require user

intervention;

5. Location information acquisition must offer support to multiple location

observations, which means that simultaneous observations producing dis-

tinct location information for the same object may occur;

6. Location information management must support indeterminacy, which

means that location information for some objects may not be available

at some instant;

7. Location information management must offer support to object naming,

which is the assignment of meaningless unique names to located objects.

The first two items should not be confused. While mobile object locations

clearly may need to change as time passes, meaning that they are dynamic, it

is not so obvious that they should also be mutable. This is because a location

service may provide information with distinct accuracies or multiple services may

be used, as observed by Leonhardt and Magee (1996). The requirement of unique

object naming may be controversial, but appears to be the minimal condition

to support properties not treated here such as authenticity and security.

5.2 Location Management in a Formal Setting

Before introducing definitions directly related to location management, we present

in Figure 5.1 the specification of region tree nodes, particular instances of the

spatial hierarchical data structures proposed by Samet (1984). These will be

used in our design later on. At the top of the specification, we can see sort

symbols denoting not only standard actor data types but also the four compass

points (direc). Constant and operation symbols appear in the same statement.

Each quadratic planar region is represented by a terminal node (node), which

is created undivided (bot = T), or by a root node (root). Terminal nodes may

receive requests to divide themselves in sub-regions (split) organised in reg ac-

cording to the directions of the compass points. Nodes need to be aware of

their own mail address (me) and the name of a parent node (pr), when it exists.

Eventually, continuations may be created (ct) to expect the answer of queries

of region inclusion (in). Defined in this way, these are quaternary trees wherein

nodes may be dynamically associated to more refined partitions of the plane.

160 Chapter 5. Case Study: Location Management for Mobility

Actor RegionTreeNode
data types addr, bool, int, direc (T, F : bool; 0, 1, 3 : int; + : int× int→ int; N, S, E, W : direc)
attributes me, pr : addr; reg : direc→ addr; up, bot : bool; an : int

actions ct(addr2) : local birth;

root(addr5), node(addr2) : local + extrn birth;

go, inc, updt(addr4) : local computation;

ack(addr4) : extrn message;

split(addr), in(addr2), rpl(addr2, bool) : local + extrn message

axioms n : addr
4; k, p, q, r, s, t, u, x, y, z : addr; d : direc, v : int, b : bool

root(k, ~n)→ me = k ∧ up = F ∧ bot = F ∧ reg = ~n ∧ an = 0 (20.1)
node(k, p) ∨ ct(k, p)→ me = k ∧ pr = p ∧ up = F ∧ bot = T ∧ reg[d] = k ∧ an = 0 (20.2)
root(k, ~n) ∨ node(k, p) ∨ ct(k, p)→ X(go) (20.3)
go ∧ reg = ~n ∧ an = v → X(reg = ~n ∧ an = v ∧ up = T) (20.4)
updt(~n) ∧ up = b ∧ an = v → X(up = b ∧ an = v ∧ bot = F ∧ reg = ~n) (20.5)
inc ∧ up = b ∧ reg = ~q ∧ an = v → X(up = b ∧ reg = ~q ∧ an = v + 1) (20.6)
(go ∨ updt(~n) ∨ inc) ∧me = p ∧ pr = q → X(me = p ∧ pr = q) (20.7)
split(k) ∧me = p→ X(∃~q · updt(~q) ∧ new(node, qi, qi, p) ∧ send ack, k, ~q ()) (20.8)
(in(k, p) ∧ r = k ∨ rpl(r, s, T) ∧ pr = p) ∧me = k → X(send rpl, p, r, k, T ()) (20.9)
in(k, p)∧me = q 6= k∧bot = F∧reg = ~r→X(∃! s · new(ct, s, q, p)∧send in, ri, k, s ()) (20.10)
in(k, p) ∧me = q 6= k ∧ bot = T→ X(send rpl, p, k, q, F ()) (20.11)
rpl(k, p, F) ∧ pr = r ∧me = q → X(an = 3 ∧ send rpl, r, k, q, F (∨)an 6= 3 ∧ inc) (20.12)
∃~n, ~p · new(node, ni, pi, q) ∨ updt(~n) ∨ send ack, r, ~n (←)split(r) ∧me = q (20.13)
inc← ∃k, p · rpl(k, p, F) ∧ an 6= 3 (20.14)
send rpl, k, p, q, T (←)(in(q, k) ∧ p = q ∨ ∃s · rpl(p, s, T) ∧ pr = k) ∧me = q (20.15)
send rpl, k, p, q, F ()← (in(p, k)∧p 6=q∧bot=T∨∃s·rpl(p, s, F)∧pr=k∧an=3)∧me=q

(20.16)
∃k · new(ct, k, q, r) ∨ send in, pi, s, k (←)in(s, r) ∧me = q 6= s ∧ bot = F ∧ reg = ~p (20.17)
up = T→ FE(deliv (split, p)) ∧ FE(deliv (in, q, r)) ∧ FE(deliv (rpl, s, t, b)) (20.18)
up = T→ FE(split(t)) ∧ FE(in(u, x)) ∧ FE(rpl(y, z, b)) (20.19)

End

Figure 5.1: Specification of region trees.

Based on the requirements list above, we make our first design decision

following Harter and Hopper (1994) by using references to objects denoting

geographic regions instead of dealing with location information directly. In this

way, each located object acquires a new attribute (loc), which is to contain the

mail address of an actor representing a region in a location space. Using region

trees as in Figure 5.1 for this purpose, we treat both the dynamic and mutable

character of location information with this decision: as the value of an attribute,

such information can always be changed; as a reference, it does not constrain

the shape and size of location observations. We make, however, the simplifying

assumption that geographic regions are divided into disjoint squares, due to

the structure of such trees. In a real global location system, it may be more

appropriate to adopt a location space divided according to a spherical coordinate

system with origin in the earth centre. Unique object naming is treated similarly,

5.2. Location Management in a Formal Setting 161

Actor Sensor
data types addr, bool, int (T, F : bool; 0, 1, MAX : int; + : int× int→ int)
attributes me, srv, obj, id, loc : addr; up : bool; time : int

actions sens(addr5) : local + extrn birth;
go, reloc(addr), set(int), obs : local computation;
tick : local + extrn message;

detect(addr2), unreach(addr2) : extrn message

axioms n, p, q, r : addr, v : int, b : bool

sens(n, p, q, r, s)→me = n ∧ srv = p ∧ obj = q ∧ id = r ∧ loc = s ∧ time = 0 ∧ up = F (21.1)
sens(n, p, q, r, s)→ X(go ∧ send tick, n ()) (21.2)
go ∧me = n ∧ loc = q ∧ time = v → X(me = n ∧ loc = q ∧ time = v ∧ up = T) (21.3)
reloc(n) ∧me = p ∧ time = v ∧ up = b→ X(loc = n ∧me = p ∧ time = v ∧ up = b) (21.4)
set(v) ∧me = n ∧ loc = q ∧ up = b→ X(time = v ∧me = n ∧ loc = q ∧ up = b) (21.5)
(go ∨ reloc(n) ∨ set(v)) ∧ srv = p ∧ obj = q ∧ id = r→X(srv = p ∧ obj = q ∧ id = r) (21.6)
obs ∧me = n ∧ srv = p ∧ obj = q ∧ id = r→X(me = n ∧ srv = p ∧ obj = q ∧ id = r) (21.7)
obs ∧ time = v ∧ loc = n ∧ up = b→ X(time = v ∧ loc = n ∧ up = b) (21.8)
obs ∧ srv = n ∧ loc = p ∧ (obj = q ∨ id = q)→ X(set(0) ∧ send detect, n, q, p ()) (21.9)
tick ∧ time = MAX ∧ src = n ∧ obj = p ∧ loc = q→X(set(0)∧send unreach, n, p, q ())

(21.10)
tick ∧ time 6= MAX ∧ time = v → X(set(v + 1)) (21.11)
send detect, n, p, q (←)obs ∧ srv = n ∧ loc = p ∧ (obj = q ∨ id = q) (21.12)
send unreach, n, p, q (←)tick ∧ time = MAX ∧ src = n ∧ obj = p ∧ loc = q (21.13)
set(v)← v = 0 ∧ (obs ∨ tick ∧ time = MAX) ∨ v = time + 1 ∧ tick ∧ time 6= MAX (21.14)
up = T→ FE(deliv (tick)) ∧ FE(tick) (21.15)

End

Figure 5.2: Specification of sensors.

requiring the existence of a naming attribute (id) in each named object.

In order to treat the requirements related to location information acquisi-

tion and management, we first adopt the specification of sensors in Figure 5.2.

Each sensor should be created with knowledge of a location service mail address

(srv) and is responsible for producing sequential observations (obs) of a named

located object (obj) in a specific region (loc). Sensors are mobile as well and

detect themselves in the monitored region (21.9). We omit their straightforward

generalisation to deal with the observation of several distinct objects.

Each sensor keeps an internal clock which evolves due to a stream of self-

addressed tick messages initiated just after the actor is created. Upon creation,

the resulting occurrence of a computation go makes the actor ready for the de-

livery and consumption of such messages. The clock is reset, set(0), after MAX

cycles or when the user is observed (21.9 and 21.10). Axiom (21.14) guarantees

that resets do not happen in other occasions. Indeterminacy is treated by this

clocking mechanism, which signs to the location service that the user is un-

reachable (unreach) whenever observations do not happen before the deadline

MAX (21.10). A detect message with the user location is sent to the service

162 Chapter 5. Case Study: Location Management for Mobility

Actor MobileAgent
data types addr, bool (T, F : bool)
attributes me, id, loc, to : addr; up, fwg, nul : bool

actions ag(addr3) : local + extrn birth;
redir(addr) : local computation;

sub(addr2) : extrn message;

fwd(addr), mv(addr
2), cp(addr

3) : local + extrn message

axioms n, p, q, r, s, t : addr; b : bool

ag(n, p, q)→ me = n ∧ id = p ∧ loc = q ∧ fwg = F ∧ to = n (22.1)
ag(n, p, q)→ X(go) (22.2)
go ∧ fwg = b ∧ to = n→ X(up = T ∧ fwg = b ∧ to = n) (22.3)
redir(n) ∧ up = b→ X(fwg = T ∧ to = n ∧ up = b) (22.4)
(go ∨ redir(n)) ∧me = p ∧ id = q ∧ loc = r → X(me = p ∧ id = q ∧ loc = r) (22.5)
fwd(n)→ X(redir(n)) (22.6)
mv(n, p) ∧ fwg = F ∧me = q ∧ id = r → X(redir(q) ∧ send cp, n, p, q, r ()) (22.7)
mv(n, p) ∧ fwg = T ∧ to = q → X(send mv, q, n, p ()) (22.8)
cp(n, p, q) ∧ loc = r→X(∃! s · new(ag, s, s, q, r)∧send fwd, p, s () ∧send sub, n, s, r ())

(22.9)
redir(n)← fwd(n) ∨ ∃p, q · (mv(p, q) ∧me = n ∧ fwg = F) (22.10)
∃n, p · new(ag, n, p, q, r) ∨ send fwd, s, n (∨)send sub, t, n (←)cp(t, s, q) ∧ loc = r (22.11)
send mv, n, p, q (←)mv(p, q) ∧ to = n ∧ fwg = T (22.12)
send cp, n, p, q, r (←)mv(n, p) ∧me = q ∧ id = r ∧ fwg = F (22.13)
up = T→ FE(deliv (cp, n, p, q)) ∧ FE(deliv (mv, r, s)) ∧ FE(deliv (fwd, t)) (22.14)
up = T→ FE(cp(n, p, q)) ∧ FE(mv(r, s)) ∧ FE(fwd(t)) (22.15)

End

Figure 5.3: Simplified specification of mobile agents.

otherwise (21.9). Multiple location observations are obtained by many sensors

concurrently dealing with the same located object and by the (fair) merge of

observation messages delivered to the location service. Unintrusivity is also en-

forced as no causal connection between the production of observations and user

behaviour is imposed.

If we realise the sensors of Figure 5.2 as optical devices connected to the

architecture through radio frequency links, for instance, software mobility arises

only when located object agents are considered. Such agents are meant to fol-

low located objects through the architecture providing location dependent func-

tionality such as ubiquitous message delivery and transportable user sessions

(Spreitzer and Theimer 1994). Although we leave this additional functionality

unspecified here, we present a specification of mobile agents in Figure 5.3.

We choose to capture the handover process of mobile objects as localised

agent replication. A mobile agent q may receive a request from p to move to the

location of another agent n (q.mv(n, p)), presumably located closer to the object

q represents. If an agent is currently moving to a new location (fwg = T), such

requests will be delayed by self-forwarding until the agent finishes to move (22.8).

5.2. Location Management in a Formal Setting 163

h
�
�

@
@

......................

......................

................

................

�
��?

������

HHHHHjHH
HH

HY

��
��
�*

HH
HH

HY������
6

?

HHHHHj
6

������
?

Sensor

User

Continuation

Service

Old Mobile
Agent

Correctly Located
Mobile Agent

New Mobile
Agent

rpl/rpl

new ct

in/in

res/rpl in/in

res/rpl

detect/
at

unreach/
out

mv/move

sub/done

fwd/
fwd

cp/
cp

Location
Space

Location
Subspace

new ag

Figure 5.4: Internal event flow of the mobile architecture.

In order to move, the original agent q issues a request for the correctly located

agent n to create a local copy (cp) of q (22.7), supplying in the message any

required information for the copy (here, in particular, just its logical name id).

After consuming this kind of replication request, an agent creates the desired

replica and notifies both the original agent and the requesting service that the

located object representative can be substituted, through the messages fwd and

sub (22.9), respectively.

To ensure coordination between sensors and agents, a location service must

guarantee that the asynchronous messages they exchange are correctly addressed

and ordered. This situation is explained by the diagram in Figure 5.4. Once

a located object is detected in a region (at), the location service has to find

among the registered objects a corresponding mobile agent in the region to

request the creation of a replica of the moving agent therein. The location

space is recurrently queried (in) until such an agent is found. Then, the service

requests the agent of the relocated object to move to the place of the correctly

located agent (move). At the end, the service is notified (done) so that the old

agent can be discarded and new movement requests can be processed.

Since the location service has to associate located object names (id) to

mobile agents, to keep track of their location (loc) and to put agents in contact

to support mobility, we consider that server nodes providing compartmentalised

bits of this functionality, one for each located object, are organised in circular

lists, adopting the specification in Figure 5.5. Each server node also records

if there is no location information available for the object (st = NL). This

164 Chapter 5. Case Study: Location Management for Mobility

Actor Server
data types addr, bool, status (T, F : bool; OK, NL, MV : status)
attributes me, id, loc, xt, ag : addr; st : status

actions srv(addr5) : local + extrn birth;

ch(addr3, bool) : local computation;

mrq(addr3), ack(addr), ins(addr4), done(addr2) : local + extrn message;

?(addr2), res(addr2, bool), at(addr2), out(addr2) : local + extrn message;

move(addr), in(addr2), @(addr2) : extrn message

axioms n, p, q, r, s, t, u, x : addr, v : status

srv(n, p, q, r, s)→ me = n ∧ xt = p ∧ id = q ∧ loc = r ∧ ag = s ∧ st = OK (23.1)
ch(n, p, q, v)→ X(xt = n ∧ loc = p ∧ ag = q ∧ st = v) (23.2)
ch(n, p, q, b) ∧me = r ∧ id = s→ X(me = r ∧ id = s) (23.3)
ins(n, p, q, r)∧xt=s∧loc= t∧ag=u∧st=v→X(∃x·new(srv,x,x,s,n,p,q)∧ch(x,t,u,v)) (23.4)
ins(n, p, q, r) ∧ xt = s→ X(∃t · new(srv, t, t, s, n, p, q) ∧ send ack, r, t ()) (23.5)
mrq(n, p, q)∧xt=r∧loc=s∧ag= t→X(∃! u·new(srv, u, q, r, p, n, t)∧send in, s, p, u ())

(23.6)
?(n, p)∧id=n∧me=q∧loc=r→X(st=OK∧send @,p,n,r () ∨st 6=OK∧send ?,q,n,p ())

(23.7)
?(n, p) ∧ id 6= n ∧ xt = q → X(send ?, q, n, p ()) (23.8)
at(id, p)∧me=q∧xt=r∧ag=s∧(loc 6=p∧st=OK∨st=NL)→X(send mrq, r, s, p, q ())

(23.9)
at(n, p)∧id = n∧loc = q∧ag = s∧(p 6= q∧st = OK∨st = NL)→X(ch(r, q, s, MV)) (23.10)
at(n, p) ∧ xt = q ∧ (id 6= n ∨ st = MV)→ X(send at, q, n, p ()) (23.11)
out(n, p) ∧ id = n ∧ xt = q ∧ loc = r ∧ ag = s→ X(ch(q, r, s, NL)) (23.12)
out(n, p) ∧ id 6= n ∧ xt = q → X(send out, q, n, p ()) (23.13)
res(n, p, T) ∧ loc = s ∧me = q ∧ ag = t→ X(send move, s, t, q ()) (23.14)
res(n, p, F) ∧me = r ∧ xt = s ∧ loc = t ∧ id = u→ X(send mrq, s, t, u, r ()) (23.15)
done(n, p) ∧ xt = q → X(ch(q, p, n, F)) (23.16)
...
and usual axioms for readiness, absence of unsolicited responses and enabledness...

End

Figure 5.5: Specification of location service nodes.

knowledge is used to postpone until the object location becomes known (23.7

and 23.8) the answer to location queries, using the message symbols @ and ?.

Every message addressed to the location service circulates around the

linked list until the node with correct identity is found. In case an observa-

tion (at) from a sensor arrives carrying a new object location (23.9), a request

for the rest of the list to find some agent placed therein is issued aiming to

support the movement to that location (mrq). For each registered located ob-

ject, the location space is queried in a two step process: a continuation actor to

process the query answer will be created (23.8), and this new actor will either

request the relocated object agent to move (23.14) or will forward the query to

the next list element (23.15).

The informal description of the relationship between each pair of specifica-

5.2. Location Management in a Formal Setting 165

(b)
Sensor ⊕ Server

detect b at

unreach a out� -
� -

MAg ⊕ Server

mv d move

sub c done� -
� -

Server ⊕ RTN

in f in

res e rpl� -
� -

(a)

�
�
���

A
A
AAK

@
@

@@I

@
@

@@I

�
�
���

�
�
���

. @
@

@@I

@
@

@@I

�
�
���

�
�
���

.

A
A
AAK

�
�
���

�
�
���

@
@

@@I

�
�
�
��

Component2Component1
Component3

MobileAgent
(MAg)

RegionTreeNode
(RTN)

Server
Sensor

Connector2 Connector3Connector1

MobileArchitecture (MAr)

Figure 5.6: Composition of the architecture: Shared actors (a) and actions (b).

tions should not substitute their formal composition, which is still missing here.

The diagram in Figure 5.4 gives a good clue on what remains to be defined:

the “physical communication channels”, which are formally defined using spec-

ification morphisms. For each pair of specifications, individually represented by

distinct geometric figures, that diagram shows how to relate their message sym-

bols. For instance, the messages mv and sub of agents should be respectively

associated with move and done of servers. Note that relating external to local

symbols yields the direction of the message flow described above. Also observe

in our example that we cannot produce a direct translation of the specification

of agents into that of servers nor in the opposite direction. Therefore, to inter-

connect these entities we need to define mediating theory presentations to serve

as connectors. Their nature is illustrated by the diagram in Figure 5.6.

To specify the linguistic structure of the mobile architecture in a formal

manner, we call the mediating specifications in Figure 5.6.a Connectors. Each

of them contains two external message symbols only (without axioms as well).

We also provide translations including their contents after necessary renamings

into the connected presentations. Taking connectors, connected specifications

166 Chapter 5. Case Study: Location Management for Mobility

and the morphisms between them, the composite theory presentations are de-

fined by pushout constructions. Defined in this way, each Component in the

figure contains all the renamed symbols and the axioms of the connected spec-

ifications, but the symbols identified by the connectors are equalised. That is

why a message move from servers can be understood as mv when it is delivered

to an agent, for example, no matter its name in the composite component. The

detailed definition of connectors and their morphisms appears in Figure 5.6.b.

5.3 Verifying Location Management Properties

The previous section introduced a set of composed specifications related to lo-

cation management and described the intended behaviour of the specified ob-

jects when properly connected. In this section, we particularise our description

providing more details about the dynamic configuration of our architecture. We

make a number of simplifying assumptions to obtain a tractable example. In ad-

dition, we sketch the verification of some interesting properties. Rely-guarantee

assertions are proposed below to capture these properties.

5.3.1 Location Space

We consider the existence of a non-trivial minimally divided location space rep-

resented by a tree of height one. This structure consists in a root and four child

nodes, each of which denoting a quarter of the location plane associated to the

respective compass point. The division of these location space regions is consid-

ered to be always forbidden. In addition, we assume that only child nodes may

eventually communicate with continuation actors created by the root node to

answer inclusion queries. Under these conditions, whenever a query is dispatched

to a node in the location space, the query is answered eventually:

Assertion LOC

init k.new(node, ni, ni, l) (i ∈ [1..4]), k.new(root, l, l, ~n),
G(∀p, q · p = l ∨ p ∈ ~n→ ¬p.split(q))

rely ∀p, q · (∃r · l.new(cnt, q, l, r))→ G(∀t · (∃r, s, v · t.send rpl, q, r, s, v ())→ t ∈ ~n)
pre x.send in, z, y, x (,)z = l ∨ z ∈ ~n

post ∃v · z.send rpl, y, x, v ()

The derivability of the assertion above is justified by a case analysis ar-

gument. First note that the involved actors are always eventually enabled for

delivery and consumption. Hence, if the recipient of a query is one of the child

nodes, because the result of such queries depends solely on the state of the re-

cipient itself (recall that nodes are assumed to remain undivided), the answer is

5.3. Verifying Location Management Properties 167

locally produced eventually (20.9). If the recipient is the root node, the query is

consumed, a continuation actor is created (20.10) and the query is dispatched to

each child node. According to the preceding argument, a response is produced

for each of these queries. In the end, due to our assumption, the continuation

actor computes the query result after consuming only all child node responses

(20.12).

5.3.2 Location Service

Now we can discuss the properties of the main components of our architecture.

Here we analyse only a simple situation in which there are two locations actually

populated and a pair of agents representing mobile objects. Another pair of fixed

agents, one at each populated location, is also assumed to exit in order to support

the handover process of mobile agents. All these objects are connected through

a static circular network of server nodes where there is available a sensor per

location and mobile agent.

To formalise the configuration above according to our previous informal

descriptions, we also assume that there are actors which serve as mobile object

identifiers. These are created through the birth action name, which is presumed

to appear in a theory presentation connected to MAs. We use the logical unique-

ness of their mail addresses to guarantee unique mobile object identification. The

following definitions are also used in the assertions below:

ploc(j) (nearest populated location) def
= (j − 1 div 2) + 1

nsv(j) (next server) def
= j + 1 (mod 4)

psv(j) (previous server) def
= j − 1 (mod 4)

fsv(j) (nearest server of fixed agent) def
= 2 ∗ (j div 3) + 1

msv(j) (nearest server of mobile agent) def
= 2 ∗ (j div 3) + 2

We initially want to show that whenever a mobile object is observed, the

respective observation message will eventually be consumed by the server node

in charge of keeping track of the location of the agent:

168 Chapter 5. Case Study: Location Management for Mobility

Assertion MAG

init init1..3-LOC,

j ∈ [1..4]

k.new(name, naj), k.new(name, nss
ploc(j)
fsv(j)),

k.new(ag, aj , aj , naj , nploc(j)), k.new(srv, svj , svj , svnsv(j), naj , nploc(j), aj),

k.new(sens, ss
ploc(j)
fsv(j) , ss

ploc(j)
fsv(j) , svfsv(j), nss

ploc(j)
fsv(j) , nploc(j)),

G(/∃j ∈ [1..4], p, q, r, s · svj .ins(p, q, r, s)),

G(/∃i, j ∈ [1..4], p · afsv(j).mv(p, q) ∨ ss
ploc(i)
fsv(j) .reloc(p)),

G(∀j ∈ [1..4], p · (∃q, r · p.send at, svj , q, r ())→p = svpsv(j)∨∃i ∈ [1..2] · p = ssi
fsv(j))

rely rely-LOC

pre x.obs, ∃i, j ∈ [1..4] · x = ss
ploc(j)
fsv(i) , x.id = y, x.loc = z

post ∃g ∈ [1..4] · svg .at(y, z) ∧ svg .id = y

Since we know that each of the actors above is always eventually enabled

for delivery and consumption, we can simply ignore this property again in the

following justification of derivability of the assertion above. From our config-

uration assumption and (21.9), we infer that once an observation happens the

respective message is dispatched to and eventually consumed by a server node.

Two distinct situations may arise: the recipient node controls the relocated ob-

ject agent, or, because this is not the case, the observation is sent to the next

server node in the circular list (23.11). The observation message arrives at the

appropriate node after reaching at most four such objects.

Now we wish to show that whenever a mobile object is observed, the

respective agent eventually reaches the location of observation. Here we have

to take into account two facts: only continuation actors used in querying the

location space can decide whether to dispatch the query to the remainder of the

list or to use the agent of the current server node, and the relocation process

can only be completed due to a message received from the new object agent.

Assertion MOV

init init-MAG,

∀j ∈ [1..4] ·G((∃p · svj .at(id, p) ∧ (svj .loc 6= p ∧ svj .st = OK ∨ svj .st = NL))→
(/∃q, r · svj .done(q, r))W(∃s, t, u, w · svj .ag.new(ag, s, t, u, w) ∧ /∃q, r · svj .done(q, r)))

rely rely-MAG,

∀u · (∃j ∈ [1..4], p, q, r, s · svj .new(srv, u, svj , p, q, r, s))→
G(∀t · (∃p, q, b · t.send res, u, p, q, b ())→ ∃j ∈ [1..4] · t = nploc(j))),

∀r, s, t, u, j ∈ [1..4] · (∃p, q · svj .ag.new(ag, u, p, q, r))→
(¬svj .done(t, s))W(t = r ∧ s = u))

pre pre-MAG

post ∃g ∈ [1..4], s · svmsv(g).st = OK ∧ svmsv(g).ag = s ∧ s.id = y ∧ s.loc = z

We have to treat three different situations corresponding to the possible states

of the recipient server node: the respective agent is ready to move (st = OK),

there is no location information available at the moment (st = NL), or the agent

is currently moving (st = MV). We claim here and show below that whenever an

agent is moving, this process is eventually completed and the respective server

5.3. Verifying Location Management Properties 169

node is notified about this fact, returning to a ready state sometime in the

future. So, it suffices to discuss the verification of the other two cases, which

can both be treated as discussed in what follows.

If there is location information available saying that the agent is already

at the right location, we reach our conclusion directly. Alternatively, we can

use (23.9) and (23.6) to connect LOC to MAG and conclude that a movement

request is dispatched to the remainder of the circular list (23.15). The movement

request arrives at the appropriate server node after reaching at most four such

objects. As a result, a movement request is dispatched to the relocated object

agent (23.14). Because our assumptions prevent that a movement request arrives

at an agent before a previous relocation process is completed, the request is

consumed by the agent and a replication request is readily issued to the correctly

located agent determined in the preceding querying process (22.6). Eventually,

this message is consumed, the new agent for the relocated object is created and

not only the old agent but also the respective server node are notified (22.8).

In the end, the server enters into a ready state pointing to the properly located

new agent (23.16).

Based on the previous assertion, we can also produce an interesting exam-

ple using our general composition rule. Applying the substitution [x\x′] through-

out, we can generate another assertion analogous to the above. Composing these

two assertions using our rule and requiring that x 6= x′, we can conclude that

whenever two mobile object observations happen in parallel at different places,

the respective agents will move to the involved locations eventually.

5.3.3 Other Properties of the Mobile Architecture

Location dependent functionality such as ubiquitous message delivery can be

specified and verified based on the framework described above. Each mobile

object agent should be able to query in terms of logical object identifiers (id)

the location service for the location of the recipient. The message is dispatched

to the fixed agent assumed to exist at that location. Upon receipt, such an agent

either locally delivers the message to the recipient or forwards the message to

another agent at the new location of the target object. In a similar context

which does not consider temporary absence of location information, Sanders

et al. (1997) outlines a proof that each message eventually reaches the recipient

provided that this object eventually stops moving.

170 Chapter 5. Case Study: Location Management for Mobility

5.4 Summary and Related Work

As a means of illustrating that the formalism and discipline proposed in this

thesis apply equally well to designing real-sized extensible systems, in this chap-

ter we have shown how to approach object-based mobile systems. As it turns

out, our logical system and the adopted rely-guarantee discipline can be directly

applied without any modification or additional coding technique to capture mo-

bility. Basically, our approach consists in annotating located objects with an

additional attribute containing references to location objects, as suggested by

Harter and Hopper (1994), and by assuming the existence of a network of fixed

geographically distributed objects which can deliver localised replication of re-

mote objects so as to support mobility. The advantage of approaching mobility

in this extra-logical manner is that specification and verification can be carried

out much in the way that we design any system using the same formalism.

A few related work can be gathered in the literature, most of which adopt-

ing the programming logic of UNITY (Chandy and Misra 1988). Sanders et al.

(1997) concentrate in specifying and verifying the querying and routing algo-

rithms of a mobile architecture. Their hierarchical organisation of the location

space is similar to ours, but the problem is treated in a monolithic, unstructured

manner, which we believe makes both specification and verification more diffi-

cult and error prone. Initial work developed by Wilcox and Roman (1996) on

attempting to extend UNITY introduced mobility concepts just as part of the

refinement process. If mobility arises in a set of requirements, that approach

would not be so effective: initial specifications are required before any mobil-

ity aspect can be considered. Recently, the same research group has endowed

UNITY with elaborated logical reasoning principles to tackle mobility (Roman

et al. 1997, McCann and Roman 1998): each UNITY program is required to de-

fine a specific variable containing concrete locations and transient interactions

between co-located objects may occur.

In the process calculi literature, mobility has also received a lot of at-

tention, motivating the evolution of the static process configurations of SCCS

(Milner 1983) to the dynamic ones of the π-calculus (Milner et al. 1992). We

have provided evidence here that most of the features of π-calculus processes

can also be specified using our logical system. For instance, we can simulate

recursion creating continuation actors and exchanging asynchronous messages;

dynamic data structures can be represented as objects and so on. More im-

portantly, the requirements related to mobility receive a more refined treatment

here as process in the π-calculus are modelled as terms while we adopt theory

presentations to represent objects. On the one hand, it seems to be easier to

5.4. Summary and Related Work 171

define notions of simulation and reduction for processes, treating in this way

the refinement and operational behaviour of the specified objects. On the other,

here it is possible to specify and reason about mobile objects as first-class en-

tities using our more expressive logical system, which we feel more appropriate

to represent the real world. Orava and Parrow (1992) recognise that π-calculus

specifications guarantee only that the specified features are possible, but these

may not occur. This can only be avoided by adjoining modal or temporal con-

nectives to process calculi. It would be interesting to compare our formalism to

those proposed by Milner et al. (1993) in terms of expressive power.

172 Chapter 5. Case Study: Location Management for Mobility

Chapter 6

Concluding Remarks

In this thesis, we have characterised extensible software systems as those sub-

ject to functional or structural dynamic changes that may range over first class

entities, which can be created, altered and referenced. We defined a first-order

branching time logical system that seems to be expressively rich enough to spec-

ify and verify the properties of interest in this domain and particularised our

system according to specific software development approaches that appear to

enforce extensibility. In addition, we have argued in favour of a proof-theoretic

way of dealing more effectively with the rigorous design of extensible systems.

A number of contributions and ideas for further work are listed below as an

outcome of our research.

6.1 Contributions

Extensible software systems have been increasingly demanded in practice, par-

ticularly as a means of bridging the gap between user requirements and actually

provided functionality (see Bershad et al. (1995) for an example related to op-

erating systems design). They have also become important in recent years with

the advent of networking architectures that are inherently extensible. Although

some recent work used the term extensibility to make reference to the capability

of some software architectures of presenting extended functionality at run time,

e.g. (Matsuoka 1993), we are not aware of any attempt at characterising this

notion in full. We believe that it is important in software design to elucidate the

meaning of this and related notions like openness, mobility and reconfigurability

— the design space of extensible systems in the terminology of Wegner (1987)

— for the sake of avoiding ambiguity and ensuring correctness.

Our characterisation appears to be theoretically important as it identifies

logical features that are required in representing and verifying the notions men-

tioned above. At the programming level, some other authors have already been

173

174 Chapter 6. Concluding Remarks

concerned with providing a formal account for extensibility:

A programming language may be extended in data structures and/or

in computation devices. Extension in data structures means the

possibility of (run-time) modification of the data environment of a

program. This extension can be of two kinds: static and dynamic.

(Gergely and Úry 1991)

However, this distinction between data and computing units of extension seems

to be appropriate only at lower abstraction levels. That is why we have preferred

to develop instead a study of various software development approaches and on

how they enforce extensibility. The way we represent extension, relying on

hidden symbols, is similar to the aforementioned work:

The extension in computation devices provides new control struc-

tures in our case. In order to introduce a new control structure we

have to provide all necessary functions and relations required to re-

alise the new control. Therefore, extension in computation devices

can also be defined as a static extension of data structures. (Gergely

and Úry 1991)

It is clear that the rigorous design of extensible systems requires a suitable

logical system. In this thesis we have defined a new first-order branching time

logical system with equality for this purpose. Our choice of a first-order system

with equality stems from our desire to deal with communities of named objects

which in general may reconfigure and grow in number without any a priori

bound. A temporal logical system is chosen because we wish to represent many

distinct modes of interaction between components, which may co-exist and thus

behave concurrently. Finally, the assumption of branching flows of time appears

to be an adequate way of talking about the existence of some behaviours in

which a particular event occurs, typically in open system specifications, without

committing all specified behaviours to present the same property. Many similar

logics certainly exist, the temporal logic of actions developed by Lamport (1994)

is the most notable example, but we prefer to adopt our own system for the

reasons detailed in Chapter 2.

The raw logical system mentioned above was particularised in Chapter 3

according to two distinct software development approaches which enforce exten-

sibility. We have proposed an axiomatisation of the actor model, which has been

semantically studied by a number of authors. We also showed how to compose

actor specifications using categorical constructions called co-limits and how to

take advantage of the complex structure of actor descriptions to decompose the

6.2. Further Work 175

verification process. In particular, to verify global properties of actor compo-

nents, we introduced a new rely-guarantee discipline based on simple temporal

sentences. These developments constitute a suitable framework for open recon-

figurable systems design, which indeed present all the aforementioned properties

of extensible systems. In Chapter 3, another mode of interaction and a distinct

software development approach were also shown to be representable in terms of

actor specifications and morphisms, which shows that the actor model is expres-

sively rich enough for many purposes in software design.

In Chapter 4, we sketched, by sticking to actor specifications but allowing

references to their hidden symbols in a disciplined manner, how meta-level objects

can be given a formal treatment. We argued that such a treatment should be

regarded as necessary to ensure in an abstract and elegant way separation of

concerns between base-level objects dealing with the problem domain and meta-

level objects handling the system itself. On the other hand, we argued that one

cannot rely on the assumption of completely general meta-level support, that of

computational reflection, while defending systematic software development.

Finally, we showed in Chapter 5 that a family of mobile systems can be

rigorously designed using the same formal constructions proposed in the rest of

the thesis. We chose as a full example a location management architecture for

mobile objects. This example served to illustrate that our formalism scales well

to the treatment of real problems.

6.2 Further Work

Our logical system and its definition may give rise to interesting research. It

appears to be worthwhile investigating if the axiom schemas listed in Figure

2.15 are independent from each other. As an outcome of this investigation, one

should be able to assess if it is possible to reduce the number of schemas while

retaining their intuitive meaning. Another direction for further work is to study

if a slightly distinct semantics can be found so as to obtain a completeness result.

This may be possible following the results already obtained by Andréka et al.

(1995) concerning linear time logic. A more pragmatic continuation of this work

is to provide automated support for software development by implementing our

axiomatisation and a number of verification tactics using an interactive logical

framework like Isabelle (Paulson 1994).

Another area that appears to deserve future investigation is the refinement

of specifications in a way that ensures extensibility. We have studied approaches

to the software process that enforce extensibility and can be captured at the

176 Chapter 6. Concluding Remarks

specification level, but a long chain of refinement steps may be necessary before

extensible software is obtained. In order to cater for the dynamic configuration

of components specified using rely-guarantee constructions, their initialisation

constraints and assumptions about their environment may be realised as coordi-

nation language constructs. In this case, specifications should be refined in the

usual way to obtain a set of programs whenever possible. The challenge here is

to define a systematic method which is also compositional in that implementa-

tions of any complex specification can be verified based on the verification that

their components satisfy the constituents of the original specification.

Some other topics studied here which are not directly related to extensibil-

ity appear to have potential for practical application. It may be interesting to

investigate how to capture multi-language proof calculi in terms of general logi-

cal structures as discussed in Chapter 2. Our synchrony transformation defined

in Chapter 3 should be further investigated. In particular, to determine con-

ditions ensuring that the transformation “preserves” deadlock freedom remains

an open problem. In addition, it would be interesting to apply our discipline for

designing meta-level architectures of Chapter 4 in other situations and assess if

more general definitions can be proposed.

Appendix I

Useful Theorems

Formal proofs of the theorems stated in this appendix may be obtained directly

from the author.

I.1 Classical Propositional Logic

Postulating the axiomatization of classical propositional logic (CPL) discussed

in Section 2.3, the following theorems over ∆ ∈ obj SigCPL are provable:

(HS) {(p→ q), (q → r)} `CPL

∆
p→ r (hypothetical syllogism)

(REFL) `CPL

∆ p→ p (reflexivity)

(EXP) `CPL

∆ p→ ((p→ q)→ q) (expansion)

(PERM) `CPL

∆
(p→ (q → r))→ (q → (p→ r)) (permutation)

(LTRAN) `CPL

∆
(p→ q)→ ((r → p)→ (r → q)) (left transitivity)

(RTRAN) `CPL

∆ (p→ q)→ ((q → r)→ (p→ r)) (right transitivity)

(CONT) `CPL

∆
(p→ (p→ q))→ (p→ q) (contraction)

(NEG-L) `CPL

∆
p→ (¬p→ q)

(DOUB) `CPL

∆ ¬¬p→ p (double negation)

(NEG-R) `CPL

∆
(p→ q)→ ((p→ ¬q)→ ¬p)

(CONP) `CPL

∆
(p→ q)→ (¬q → ¬p) (contrapositive)

(OR-L) {p→ q, r → q} `CPL

∆
p ∨ r → q

(OR-R) {p→ q} `CPL

∆ p→ q ∨ r [or {p→ q} `CPL

∆ p→ r ∨ q]

177

178 Appendix I. Useful Theorems

(AND-L) {p→ q} `CPL

∆
p ∧ r → q [or {p→ q} `CPL

∆
r ∧ p→ q]

(AND-R) {p→ q, p→ r} `CPL

∆
p→ q ∧ r

(AND-E) {p ∧ q} `CPL

∆
p [or {p ∧ q} `CPL

∆
q]

(AND-I) {p, q} `CPL

∆
p ∧ q

(IFF-RL) {p→ q, q → p} `CPL

∆
p↔ q

(IFF-E) {p↔ q} `CPL

∆
p→ q [or {p↔ q} `CPL

∆
q → p]

(DM) `CPL

∆
¬(p ∨ q)↔ ¬p ∧ ¬q [or ¬(p ∧ q)↔ ¬p ∨ ¬q] (De Morgan)

(DIST-OA)
(DIST-AO)

`CPL

∆
p ∨ (q ∧ r)↔ (p ∨ q) ∧ (p ∨ r)

[or p ∧ (q ∨ r)↔ (p ∧ q) ∨ (p ∧ r)]

(distribution of ∨ over ∧)

1

(DIST-IFA)
(DIST-IFO)

`CPL

∆ (p→ (q ∧ r))↔ (p→ q) ∧ (p→ r)

[or (p→ (q ∨ r))↔ (p→ q) ∨ (p→ r)]

(distribution of implication over ∧ and ∨)

(REPL-CPL) {x↔ y} `CPL

∆ p[q\x]↔ p[q\y] (replacement)

I.2 Propositional Linear Time Logic

Postulating the axiomatization of linear time propositional logic (PLTL) dis-

cussed in Section 2.4, the following theorems over ∆ ∈ obj SigPLTL are provable:

(REPL-PLTL) {x↔ y} `PLTL

∆
p[q\x]↔ p[q\y] (replacement)

(DIST-ORV) `PLTL

∆
pVr ∨ qVr ↔ (p ∨ q)Vr (distribution of V over ∨)

(DIST-ANDV) `PLTL

∆
pV(q ∧ r)↔ pVq ∧ pVr (distribution of V over ∧)

(IDEM-F) `PLTL

∆
FFp↔ Fp (idempotence of F)

(IDEM-G) `PLTL

∆
Gp↔ GGp (idempotence of G)

(DUAL-GF) `PLTL

∆
F(¬p)↔ ¬Gp (duality between G and F)

(REFL-G) `PLTL

∆
Gp→ p (reflexivity of G)

(MON-G) `PLTL

∆
G(p→ q)→ (Gp→ Gq) (monotonicity of G)

1A sentence with p at the right-hand side of each sub-formula is also provable.

I.2. Propositional Linear Time Logic 179

(RPL-GX) `PLTL

∆
Gp→ Xp

(EXP-GX) `PLTL

∆
Gp→ XGp

(G>) `PLTL

∆
G>

(NEG-V>) `PLTL

∆ ¬(⊥V>)

(NEG-V⊥) `PLTL

∆
¬(⊥V⊥)

(FUN-X) `PLTL

∆
¬Xp↔ X(¬p) (functionality of X)

(MON-X) `PLTL

∆
X(p→ q)→ (Xp→ Xq) (monotonicity of X)

(MON-GX) `PLTL

∆
G(p→ q)→ (Xp→ Xq)

(DIST-ANDX) `PLTL

∆ X(p ∧ q)↔ Xp ∧Xq (distribution of X over ∧)

(FIX-V) `PLTL

∆ qVp↔ X(q ∨ p ∧ qVp) (fixed point of V)

(FIX-U) `PLTL

∆
pUq ↔ q ∨ (p ∧X(pUq)) (fixed point of U)

(FIX-F) `PLTL

∆
Fp↔ p ∨XFp (fixed point of F)

(FIX-G) `PLTL

∆
Gp↔ p ∧XGp (fixed point of G)

(COM-GX) `PLTL

∆ GXp↔ XGp (commutativity of G and X)

(COM-FX) `PLTL

∆ FXp↔ XFp (commutativity of F and X)

(RPL-UF) `PLTL

∆
pUq → Fq

(MON-GF) `PLTL

∆
G(p→ q)→ (Fp→ Fq)

(DIST-ORF) `PLTL

∆
F(p ∨ q)↔ Fp ∨ Fq (distribution of F over ∨)

(DIST-ANDG) `PLTL

∆ G(p ∧ q)↔ Gp ∧Gq (distribution of G over ∨)

(DIST-ANDF) `PLTL

∆ F(p ∧ q)→ Fp ∧ Fq (distribution of F over ∧)

(DIST-ORG) `PLTL

∆
Gp ∨Gq → G(p ∨ q) (distribution of G over ∨)

(LIN-FX) `PLTL

∆
Fp ∧ Fq → F(p ∧ q) ∨ F(p ∧XFq) ∨ F(q ∧XFp)

(LIN-G) `PLTL

∆
G(Gp→ q) ∨G(Gq → p)

(DIST-ORGF) `PLTL

∆ GF(p ∨ q)↔ GFp ∨GFq

(DIST-ANDFG) `PLTL

∆ FG(p ∧ q)↔ FGp ∧ FGq

180 Appendix I. Useful Theorems

(COM-FG) `PLTL

∆
FGp→ GFp

(MON-GU) `PLTL

∆
G(p→ q)→ (pUr → qUr)

[or G(p→ q)→ (rUp→ rUq)]

(MON-GW) `PLTL

∆ G(p→ q)→ (pWr → qWr)

[or G(p→ q)→ (rWp→ rWq)]

(RPL-WUF) `PLTL

∆
pUq ↔ pWq ∧ Fq

(TRAN-W) {p→ qWr, r→ qWs} `PLTL

∆
p→ qWs (transitivity of W)

The set of axiom schemes {DUAL-GF, REFL-G, MON-G, RPL-GX,

EXP-GX, FUN-X, MON-X, A10-G, FIX-U, RPL-UF} together with R1-

MP corresponds precisely to the propositional part of the axiomatization of the

temporal logic of programs proposed in (Manna and Pnueli 1983).

I.3 Propositional Branching Time Logic

Postulating the axiomatization of branching time propositional logic (PBTL)

discussed in Section 2.5, the theorems over ∆ ∈ obj SigPBTL below are provable:

(DUAL-AE) `PBTL

∆ E(¬p)↔ ¬Ap (duality between A and E)

(REPL-PBTL) {x↔ y} `PBTL

∆ p[q\x]↔ p[q\y] (replacement)

(E-R) `PBTL

∆ p→ Ep

(MOD-B) `PBTL

∆ p→ AEp

(CANC-EA) `PBTL

∆ EAp→ p (cancelation of EA)

(IDEM-A) `PBTL

∆ Ap↔ AAp (idempotence of A)

(MON-AE) `PBTL

∆ A(p→ q)→ (Ep→ Eq)

(DIST-ORE) `PBTL

∆ E(p ∨ q)↔ Ep ∨ Eq (distribution of E over ∨)

(DIST-ANDA) `PBTL

∆ A(p ∧ q)↔ Ap ∧Aq (distribution of A over ∧)

(DIST-ANDE) `PBTL

∆ E(p ∧ q)→ Ep ∧Eq (distribution of E overr ∧)

(DIST-ORA) `PBTL

∆ Ap ∨Aq → A(p ∨ q) (distribution of A over ∨)

(COM-AG) `PBTL

∆ AGp→ GAp (commutativity of G and A)

I.4. Classical First-Order Logic 181

(COM-XA) `PBTL

∆
AXp→ XAp (commutativity of A and X)

(COM-EF) `PBTL

∆
FEp→ EFp (commutativity of E and F)

(COM-EX) `PBTL

∆
XEp→ EXp (commutativity of E and X)

(IND-AG) `PBTL

∆
AG(p→ Xp)→ (p→ XAGp) (branching induction)

I.4 Classical First-Order Logic

Postulating the axiomatization of classical first-order logic (FOL) discussed in

Section 2.6, the following theorems over ∆ ∈ obj SigBFOL are provable:

(ALL-E) `FOL

∆
∀x · p[x]→ p

(MON-∀) `FOL

∆
∀x · (p→ q)→ (∀x · p→ ∀x · q)

(monotonicity of ∀)

(GEN-∀) {p} `FOL

∆
∀x · p

(DUAL-∀∃) `PBTL

∆
∀x · (¬p)↔ ¬∃x · p (duality between ∀ and ∃)

(REPL-FOL) {x↔ y} `FOL

∆
p[q\x]↔ p[q\y] (replacement)

(MON-∀∃) `PBTL

∆
∀x · (p→ q)→ (∃x · p→ ∃x · q)

(EXC-∀∃) `FOL

∆
∀x · (p[x]→ q)↔ (∃x · p[x]→ q)

[or ∃x · (p[x]→ q)↔ (∀x · p[x]→ q)]

provided that x 6∈ Free(q).

(MOV-IF∀)
(MOV-IF∃)

`FOL

∆ ∀x · (p→ q[x])↔ (p→ ∀x · q[x])

[or ∃x · (p→ q[x])↔ (p→ ∃x · q[x])]

provided that x 6∈ Free(p).

(MOV-AND∀)
(MOV-AND∃)

`FOL

∆ ∀x · (p ∧ q[x])↔ (p ∧ ∀x · q[x])

[or ∃x · (p ∧ q[x])↔ (p ∧ ∃x · q[x])]

provided that x 6∈ Free(p).

(DIST-AND∀) `FOL

∆
∀x · (p ∧ q)↔ ∀x · p ∧ ∀x · q

(distribution of ∀ over ∧)

(DIST-OR∃) `FOL

∆ ∃x · (p ∨ q)↔ ∃x · p ∨ ∃x · q

(distribution of ∃ over ∨)

182 Appendix I. Useful Theorems

I.5 Many-Sorted Logic with Equality

Postulating the axiomatization of many-sorted logic with equality (MSFOL)

discussed in Section 2.6.1, the following theorems over ∆ ∈ obj SigMSFOL are

provable:

(REPL-FOL) {x↔ y} `MSFOL

∆
p[q\x]↔ p[q\y] (replacement)

(REFL-EQ) `MSFOL

∆ x = y → y = x (reflexivity of equality)

(TRAN-EQ) `MSFOL

∆ x = y ∧ y = z → x = z (transitivity of equality)

I.6 First-Order Temporal Logic

Postulating the axiomatization of linear time many-sorted first-order logic with

equality (LTMSL) discussed in Section 2.7, the following theorems over ∆ ∈

obj SigLTMSL are provable:

(FUN) `LTMSL

∆
f(x1, . . . , xn) = x ∧ f(x1, . . . , xn) = y → x = y

for any f ∈ Funct(∆) ∪ Attr(∆) with arity(f) = n.

(BARC-G) `LTMSL

∆
∀x ·Gp↔ G(∀x · p) (Barcan for G)

(BARC-X) `LTMSL

∆ ∀x ·Xp↔ X(∀x · p)

[or ∃x ·Xp↔ X(∃x · p)]

(Barcan for X)

(BARC-F) `LTMSL

∆ F(∃x · p)↔ ∃x · Fp (Barcan for F)

(BARC-GF) `LTMSL

∆ GF(∃x · p)↔ ∃x ·GFp (Barcan for GF)

(BARC-FG) `LTMSL

∆
∀x · FGp↔ FG(∀x · p) (Barcan for FG)

(BARC-A) `LTMSL

∆
∀x ·Ap↔ A(∀x · p) (Barcan for A)

(BARC-E) `LTMSL

∆
E(∃x · p)↔ ∃x ·Ep (Barcan for E)

Appendix II

Remaining Cases in the Proof of
Soundness

We develop here the remaining cases of the soundness proof for our many-sorted

first-order branching time logic with equality MSBTL. The corresponding ax-

ioms appear in Figure 2.15.

(A2-I) Suppose that (i) (θ,N, L, wi) |= p → (q → r) and (ii) it is not the case

that (θ,N, L, wi) |= (p → q) → (p → r). From (i) and two applications

of S3, it is clear that (iii) if (θ,N, L, wi) |= p then (θ,N, L, wi) |= q im-

plies (θ,N, L, wi) |= r. From (ii) and S3, (iv) (θ,N, L, wi) |= p implies

(θ,N, L, wi) |= q, (v) (θ,N, L, wi) |= p but (vi) (θ,N, L, wi) |= r does not

hold. Applying (v) in (iv) results in (θ,N, L, wi) |= q, which in turn can be

used together with (v) in (iii) to show that (θ,N, L, wi) |= r, contradicting

(vi) in this way. Therefore, S3 and the negation of our assumption allow us

to conclude that (θ,N, L, wi) |= (p→ (q → r))→ ((p→ q)→ (p→ r));

(A3-I) Suppose that (i) (θ,N, L, wi) |= ¬q → ¬p and (ii) it is not the case that

(θ,N, L, wi) |= p→ q. From (i) and S3, it is clear that (iii) (θ,N, L, wi) |=

¬q implies (θ,N, L, wi) |= ¬p. Using (ii) and again S3, we also infer that

(iv) (θ,N, L, wi) |= p but (v) (θ,N, L, wi) |= q does not hold. S2 and (v)

allow us to say that (θ,N, L, wi) |= ¬q, but using this fact in conjunction

with (iii) shows that (iv) is contradicted. Therefore, by applying S3 to

the negation of our assumption, we conclude that (θ,N, L, wi) |= (¬q →

¬p)→ (p→ q);

(A5-GV) Suppose that (i) (θ,N, L, wi) |= G(p → q) and (ii) (θ,N, L, wi) |=

rVp→ rVq does not hold. From (ii) and S3, we have (θ,N, L, wi) |= rVp

but (θ,N, L, wi) |= rVq is not the case. According to S7, this means that

(iii) there is an sj ∈ dom L with L(wi) < L(wj) such that (θ,N, L, wj) |= r

183

184 Appendix II. Remaining Cases in the Proof of Soundness

and (θ,N, L, wk) |= p for any wk ∈ dom L where L(wi) < L(wk) < L(wj),

and (iv) for every wm ∈ dom L with L(wi) < L(wm), (θ,N, L, wm) |= r

and (θ,N, L, wn) |= q for any wn ∈ dom L where L(wi) < L(wn) < L(wm)

are not both true. In addition, the definition of satisfaction of Gp, (i)

and S3 show that (v) (θ,N, L, wj) |= p implies (θ,N, L, wj) |= q for any

wj ∈ dom L such that L(wi) ≤ L(wj). Applying the second half of (iii)

in (v), we infer that (θ,N, L, wo) |= q for every wo ∈ dom L such that

L(wo) < L(wj). For wm = wj, when we conjoin this partial result to

(iv), we obtain a contradiction. We conclude, from the negation of our

assumption and S3, that (θ,N, L, wi) |= G(p→ q)→ (rVp→ rVq);

(A7-V) Suppose that (i) (θ,N, L, wi) |= (p ∧ qVp)Vp. From (i), the definition

of satisfaction of ∧ and S7, we can see that (ii) there is wj ∈ dom L with

L(wi) < L(wj) such that (θ,N, L, wj) |= q ∧ qVp and (θ,N, L, wk) |= p

for any wk ∈ dom L where L(wi) < L(wk) < L(wj). Hence, from the first

half of (ii) and the definition of satisfaction of ∧, it is clear that (iii) there

is an wm ∈ dom L with L(wj) < L(wm) such that (θ,N, L, wm) |= q and

(θ,N, L, wn) |= p for any wn ∈ dom L where L(wj) < L(wn) < L(wm).

Because, L(wi) < L(wj), we can certainly say from the first half of (iii) and

the second half of (ii) that there is wj ∈ dom L with L(wi) < L(wj) such

that (θ,N, L, wj) |= q and (θ,N, L, wk) |= p for any wk ∈ dom L where

L(wi) < L(wk) < L(wj). We conclude using the definition of satisfaction

of ∧, S7 and S3 that (θ,N, L, wi) |= (p ∧ qVp)Vp→ qVp;

(A9-V) Suppose that (i) (θ,N, L, wi) |= (p ∨ q)Vr and (ii) (θ,N, L, wi) |=

pVr ∨ qVr is not the case. From (i), S7 and the definition of satisfaction

of ∨, (iii) there is wj ∈ dom L with L(wi) < L(wj), (θ,N, L, wj) |= p or

(θ,N, L, wj) |= q and for any wk ∈ dom L where L(wi) < L(sk) < L(wj),

(θ,N, L, wk) |= r. Moreover, from (ii), S7 and the definition of satisfaction

of ∨, we infer that (iv) for every wl ∈ dom L such that L(wi) < L(wl),

(θ,N, L, wl) |= p and (θ,N, L, wl) |= q are neither true or there is wm ∈

dom L such that L(wi) < L(wm) < L(wl) where it is not the case that

(θ,N, L, wm) |= r. In particular, (iv) holds for wl = wj, which contradicts

(iii). Therefore, by applying S3 to the negation of our assumption, we

conclude that (θ,N, L, wi) |= (p ∨ q)Vr → pVr ∨ qVr;

(A11-X) The definition of > and S3 easily entail that (θ,N, L, wi) |= >. In

particular for wk ∈ dom L such that L(wk) = L(wi)+1, which exists and is

unique due to the isomorphism between dom L and cod L, (θ,N, L, wj) |=

>. Therefore, applying the definition of satisfaction of Xp, (θ,N, L, wi) |=

185

X>;

(A14-A) If (θ,N, L, wi) |= Ap then (θ,N, L, (L−1 ◦ L)(wi)) |= p, from S8, L ∼=

L and the fact that each L is invertible. But (L−1 ◦ L)(wi) = I(wi) = wi.

Therefore, using S8 and S3, (θ,N, L, wi) |= Ap→ p;

(A18-Ebeg) Assume that (i) (θ,N, L, wi) |= beg is false and (ii) there exists

Li which agrees with L on the state propositions satisfied up to i such

that (θ,N, Li, (L
−1
i ◦ L)(wi)) |= beg. From (ii) and S6, we infer that

Li((L
−1
i ◦ L)(wi)) = 0. But Li ◦ L

−1
i = I, hence L(wi) = 0. Using S6

again, we reach (θ,N, L, wi) |= beg, which contradicts (i). Therefore,

based on S3, S8, we conclude that (θ,N, L, wi) |= E(beg)→ beg;

(A19-∀) Assume that (θ,N, L, wi) |= ∀x · p(x). From S4, for every v ∈ cod N

and every assignment Nv such that Nv(y) = N(y) if y 6= x or Nv(y) = v

otherwise, (θ,Nv, L, wi) |= p. This holds in particular for v = [[t]]θ,Nv(wi)

such that t ∈ Term(∆)s such that Class(∆)(x) = s. Therefore, using

S3, by a structural induction argument on the notion of interpretation

based on the definition of substitution and assignment, we conclude that

(θ,N, L, wi) |= ∀x · p→ p[x\t];

(A21-EQ) For any t ∈ Term(∆), [[t]]θ,N(wi) = [[t]]θ,N(wi), because terms have a

functional interpretation. From S5, we conclude that (θ,N, L, wi) |= (t =

t);

(A25-NEQG) Assume that (θ,N, L, wj) |= (t1 6= t2) for t1, t2 free from any

attribute symbol. In particular, for any wi ∈ dom L such that L(wj) <

L(wi), (θ,N, L, wi) |= (t1 6= t2), due to S2 and because [[t1]]
θ,N(wi) 6=

[[t1]]θ,N(wj) and similarly for t2. From the definition of satisfaction of G,

6= and S3, we conclude that (θ,N, L, wi) |= (t1 6= t2)→ G(t1 6= t2);

(A27-EQA) Assume that (θ,N, L, wi) |= (t1 = t2) for t1, t2 free from attribute

symbols. In particular, for any Li which agrees with L on the state propo-

sitions satisfied up to i, (θ,N, Li, (L
−1
i ◦L)(wi)) |= (t1 = t2) due to S2 and

because [[t1]]
θ,N(wi) = [[t1]]θ,N((L−1

i ◦ L)(wi)). Therefore, applying S8 and

S3, we conclude that (θ,N, L, wi) |= (t1 = t2)→ A(t1 = t2).

186 Appendix II. Remaining Cases in the Proof of Soundness

Bibliography

Mart́ın Abadi and Leslie Lamport (1994). Open systems in TLA. In: Proc.

13th ACM Symposium on Principles of Distributed Computing (PODC’94),

ACM Press 81–90.

Mart́ın Abadi and Leslie Lamport (1995). Conjoining specifications. ACM

Transactions on Programming Languages and Systems 17 (3) 507–534.

Mart́ın Abadi and K. Rustan M. Leino (1997). A logic of object-oriented pro-

grams. In: Michel Bidoit (ed.), Proc. International Conference on the The-

ory and Practice of Software Development (TAPSOFT’97), Springer-Verlag

Lecture Notes in Computer Science 1214 682–696.

Mart́ın Abadi and Stephan Merz (1996). On TLA as a logic. In: Manfred

Broy (ed.), Deductive Program Design, Springer-Verlag NATO ASI Series

235–271.

Mart́ın Abadi, Leslie Lamport, and Pierre Wolper (1989). Realizable and un-

realizable specifications of reactive systems. In: Giorgio Ausiello, Mari-

angiola Dezani-Ciancaglini, and Simona Ronchi Della Rocca (eds.), Proc.

16th International Conference on Automata, Languages and Programming

(ICALP’89), Springer-Verlag Lecture Notes in Computer Science 372 1–17.

Mart́ın Abadi (1989). The power of temporal proofs. Theoretical Computer

Science 65 35–83.

Samson Abramsky (1990). The lazy λ-calculus. In: David A. Turner (ed.),

Research Topics in Functional Programming, Addison Wesley 65–117.

Gul Agha, Svend Frolund, Rajendra Panwar, and Daniel Sturman (1993). A lin-

guistic framework for dynamic composition of dependability protocols. In:

C. E. Landwehg, B. Randell, and L. Simoncini (eds.), Dependable Comput-

ing for Critical Applications 3, Dependable Computing and Fault Tolerant

Systems 3 345–363.

Gul Agha, Wooyoung Kim, and Rajendra Panwar (1994). Actor languages

for specification of parallel computations. In: Guy E. Blelloch, K. Mani

187

188 Bibliography

Chandy, and Sridhar Jaganathan (eds.), Specification of Parallel Algo-

rithms, DIMACS Series in Discrete Mathematics and Theoretical Computer

Science 18, American Mathematical Society 239–258.

Gul Agha, Ian Mason, Scott Smith, and Carolyn Talcott (1997). A foundation

for actor computation. Journal of Functional Programming 7 (1) 1–72.

Gul Agha (1986). Actors: A Model of Concurrent Computation in Distributed

Systems. MIT Press.

Gul Agha (1990). Concurrent object-oriented programming. Communications

of the ACM 33 (9) 125–141.

Gul Agha (1997). Abstracting interaction patterns: A programming paradigm

for open distributed systems. In: Elie Najm and Jean-Bertran Stefani

(eds.), Proc. 1st IFIP International Conference on Formal Methods for

Open Object-Based Distributed Systems (FMOODS’96), Chapman and Hall

135–153.

Paulo S. C. Alencar, Don D. Cowan, and Carlos J. P. Lucena (1995). Abstract

Data Views as a Formal Approach to Adaptable Software. In: OOPSLA’95

Workshop on Adaptable and Adaptive Software.

Bowen Alpern and Fred B. Schneider (1985). Defining liveness. Information

Processing Letters 21 (4) 181–185.

Pierre America and Frank de Boer (1996). Reasoning about dynamically evolv-

ing process structures. Formal Aspects of Computing 6 (3) 269–316.

Hajnal Andréka et al. (1995). Effective temporal logics of programs. In: Leonard

Bolc and Andrzej Sza las (eds.), Time and Logic: A Computational Ap-

proach, UCL Press 51–129.

Giuseppe Attardi and Maria Simi (1991). Reflections about reflection. In:

James Allen, Richard Fikes, and Erik Sandewall (eds.), Proc. 2nd. Interna-

tional Conference on Principles of Knowledge Representation and Reason-

ing (KR’91), Morgan Kaufmann 22–31.

Arnon Avron (1991). Simple consequence relations. Information and Computa-

tion 92 105–139.

Michael Barr and Charles Wells (1990). Category theory for computing science.

Prentice Hall.

Nuno Barreiro, José Fiadeiro, and Tom Maibaum (1995). Politeness in object

societies. In: Roel Wieringa and Remco Feenstra (eds.), Information Sys-

tems: Correctness and Reusability, World Scientific 119–134.

Bibliography 189

Howard Barringer (1987). The use of temporal logic in the compositional spec-

ification of concurrent systems. In: Antony Galton (ed.), Temporal Logics

and their applications, Academic Press 53–90.

David Basin and Seán Matthews (1996). Adding meta-theoretic facilities to

first-order theories. Journal of Logic and Computation 6 (6) 835–849.

Brian Bershad et al. (1995). Extensibility, safety and performance in the SPIN

operating system. In: Proc. 15th ACM Symposium on Operating System

Priciples (SOSP’95), ACM Press 267–284.

Antonio Cau and Pierre Collete (1996). Parallel composition of assumption-

commitment specifications: A unifying approach for shared variable and

distributed message passing concurrency. Acta Informatica 33 153–176.

Maura Cerioli and José Meseguer (1997). May I borrow your logic? (Trans-

porting logical structures along maps). Theoretical Computer Science 173

311–347.

Tushar Deepak Chandra and Sam Toueg (1996). Unreliable failure detectors for

reliable distributed systems. Journal of the ACM 43 (2) 225–267.

K. Mani Chandy and Jayadev Misra (1981). Proofs of networks of processes.

IEEE Transactions on Software Engineering 7 (4) 417–426.

K. Mani Chandy and Jayadev Misra (1988). Parallel Program Design, A Foun-

dation. Addison-Wesley.

C. C. Chang and H. J. Keisler (1977). Model Theory. North Holland, 2nd

edition.

Bernardette Charron-Bost, Friedemann Mattern, and Gerard Tel (1996). Syn-

chronous, asynchronous and causally ordered communication. Distributed

Computing 9 173–191.

Brian F. Chellas (1980). Modal Logic: An Introduction. Cambridge University

Press.

Paolo Ciancarini and Chris Hankin (eds.) (1996). Proc. 1st International Con-

ference COORDINATION’96, Lecture Notes in Computer Science 1061.

Springer-Verlag.

Manuel G. Clavel and José Meseguer (1996). Axiomatising reflective logics and

languages. In: Gregor Kiczales (ed.), Proc. Reflection’96.

William D. Clinger (1981). Foundations of Actor Semantics. PhD thesis, Mas-

sachusetts Institute of Technology.

190 Bibliography

Pierre Collete (1994). Composition of assumption-commitment specifications in

a UNITY style. Science of Computer Programming 23 107–125.

John Darlington and Yike K. Guo (1995). Formalising actors in linear logic.

In: Dilip Patel, Yuan Sun, and Shushma Patel (eds.), Proc. International

Conference on Object-Oriented Information Systems (OOIS’94), Springer-

Verlag 37–53.

Ruy de Queiroz (1990). Proof Theory and Computer Programming: The Logi-

cal Foundations of Computation. PhD thesis, Department of Computing,

Imperial College, London, UK.

Rǎzvan Diaconnescu, Joseph Goguen, and Petros Stefaneas (1993). Logical

support for modularisation. In: Gérard Huet and Gordon Plotkin (eds.),

Logical Environments, Cambridge University Press 83–130.

Danny Dolev, Cynthia Dwork, and Larry Stockmeyer (1987). On the minimal

synchronism needed for distributed consensus. Journal of the ACM 34 (1)

77–97.

Carlos H. C. Duarte (1997). A proof-theoretic approach to the design of object-

based mobility. In: Howard Bowman and John Derrick (eds.), Proc. 2nd

IFIP International Conference on Formal Methods for Open Object-Based

Distributed Systems (FMOODS’97), Chapman and Hall 37–53. Canterbury,

UK.

Carlos H. C. Duarte (1997). Towards a proof-theoretic foundation for actor

specification and verification. In: Pierre-Yves Schobbens and Amedeo Cesta

(eds.), Proc. 4th Workshop on Formal Models of Agents (ModelAge’97),

115–128. Certosa di Pontignano, Italy.

Hans-Dieter Ehrich, Amilcar Sernadas, and Cristina Sernadas (1988). Objects,

object types and object identity. In: Hartmut Ehrig (ed.), Categorical

Methods in Computer Science with Aspects from Topology, Springer Verlag

Lecture Notes in Computer Science 334 142–156.

Hans-Dieter Ehrich (1982). On the theory of specification, implementation and

parameterisation of abstract data types. Journal of the ACM 29 (1) 206–

227.

Hartmut Ehrig and Bernd Mahr (1985). Fundamentals of Algebraic Specifica-

tion 1: Equations and Initial Semantics, EATCS Monographs in Theoretical

Computer Science 6. Springer Verlag.

E. Allen Emerson (1983). Alternative semantics for temporal logics. Theoretical

Computer Science 26 121–130.

Bibliography 191

E. Allen Emerson (1990). Temporal and modal logic. In: Jan van Leeuwen (ed.),

Formal Models and Semantics, Elsevier Handbook of Theoretical Computer

Science 996–1072.

José Fiadeiro and Tom Maibaum (1990). Towards object calculi. Technical

report, Department of Computing, Imperial College, London.

José Fiadeiro and Tom Maibaum (1992). Temporal theories as modularisation

units for concurrent systems specification. Formal Aspects of Computing 4

(3) 239–272.

José Fiadeiro and Tom Maibaum (1993). Generalising interpretations between

theories in the context of (π-)institutions. In: Geoffrey Burn, Simon Gay,

and Mark Ryan (eds.), Theory and Formal Methods 1993: Proceedings of

the First Imperial College, Department of Computing Workshop, Springer-

Verlag 126–147.

José Fiadeiro and Tom Maibaum (1994). Design structures for object-based

systems. In: Sthepen Goldsack and Stuart Kent (eds.), Formal Aspects of

Object-Oriented Systems, Prentice Hall.

José Fiadeiro and Tom Maibaum (1996). Interconnecting formalisms: Support-

ing modularity, reuse and incrementability. In: Gail E. Kaiser (ed.), Proc.

3rd Symposium on Foundations of Software Engineering, ACM Press 72–80.

José Fiadeiro and Tom Maibaum (1997). Categorical semantics of parallel pro-

gram design. Science of Computer Programming 28 (2–3) 111–138.

José Fiadeiro and Amilcar Sernadas (1988). Structuring theories on consequence.

In: Donald Sannella and Andrzej Tarlecki (eds.), Recent Trends in Data

Type Specification, Springer-Verlag Lecture Notes in Computer Science 332

44–72.

José Fiadeiro and Amilcar Sernadas (1990). Logics of modal terms for systems

specification. Journal of Logic and Computation 1 (2) 187–227.

José Fiadeiro, Cristina Sernadas, Tom Maibaum, and Gunter Saake (1991).

Proof-theoretic semantics of object-oriented specification constructs. In:

Robert A. Meersman, Willian Kent, and Samit Khosla (eds.), Proc. IFIP

WG 2.6 Working Conference on Object-Oriented Databases: Analysis, De-

sign and Construction, North Holland 243–284.

José Fiadeiro (1996). On the emergence of properties in component-based

systems. In: Martin Wirsing and Maurice Nivat (eds.), Proc. 5th Inter-

national Conference on Algebraic Methodology and Software Technology

192 Bibliography

(AMAST’96), Springer-Verlag Lecture Notes in Computer Science 1101

421–443.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson (1985). Impos-

sibility of distributed consensus with one faulty processor. Journal of the

ACM 32 (2) 374–382.

Melvin Fitting (1983). Proof Methods for Modal and Intuitionistic Logics, Stud-

ies in Epistemology, Logic and Methodology of Science 169. Reidel Dor-

drecht.

Robert W. Floyd (1967). Assigning meanings to programs. In: Jacob T.

Schwartz (ed.), Mathematical Aspects of Computer Science, American

Mathematical Society Proc. Symposia in Applied Mathematics 19 19–32.

Harvey Friedman and Michael Sheard (1995). Elementary descent recursion and

proof theory. Annals of Pure and Applied Logic 71 1–45.

Dov Gabbay and Ruy de Queiroz (1992). Extending the Curry-Howard inter-

pretation to linear, relevant and other resource logics. Journal of Symbolic

Logic 5 (4) 1319–1365.

Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi (1980). On the

temporal analysis of fairness. In: Proc. 7th ACM Symposium on Principles

of Programming Languages, ACM Press 163–173.

Dov Gabbay, Ian Hodkinson, and Mark Reynolds (1994). Volume I. Tempo-

ral Logic: Mathematical Foundations and Computational Aspects. Oxford

Science Publications.

Dov Gabbay (1981). An irreflexivity lemma with applications to axiomatisations

of conditions on tense frames. In: Uwe Mönnich (ed.), Aspects of Philo-

sophical Logic, Synthese Library 147, Kluwer Academic Publishers 67–89.

David Garlan (1995). Research directions in software architecture. ACM Com-

puting Surveys 27 (2) 257–261.

Gerhard Gentzen (1943). Beweisbarkeit und unbeweisbarkeit von anadagsfällen

der transfiniten induktion in der reinen zahlentheorie. Mathematische An-

nalen 119 140–161. English translation in (Szabo 1969).

Tamás Gergely and László Úry (1991). First-Order Programming Theories,

EATCS Monographs on Theoretical Computer Science 24. Springer-Verlag.

Jean-Yves Girard (1987). Linear logic. Theoretical Computer Science 50 (1)

1–102.

Bibliography 193

Fausto Giunchiglia and Luciano Serafini (1994). Multilanguage hierarchical log-

ics (or: How can we do without modal logics). Artificial Intelligence 65

1–42.

Kurt Gödel (1931). Übet formal unentscheidbare sätze der principia mathemat-

ica und verwandter systeme i. Monatschefte für Mathematik und Physik 38

173–198. English translation in van Heijenoort (1967; 592–617).

Joseph A. Goguen and Rod M. Burstall (1992). Institutions: Abstract model

theory for specification and programming. Journal of the ACM 39 (1) 95–

146.

Joseph Goguen and José Meseguer (1981). Completeness of many-sorted equa-

tional logic. Sigplan Notices 16 (7) 24–37.

Robert Goldblatt (1979). TOPOI: The categorial analysis of logic. North Hol-

land.

Robert Goldblatt (1992). Logics of Time and Computation. CSLI Publications,

2nd. edition.

Vassos Hadzilacos and Sam Toueg (1994). A modular approach to the speci-

fication and implementation of fault-tolerant broadcasts. Technical report

94-1425, Department of Computer Science, Cornell University.

Robert Harper, Donald Sannella, and Andrzej Tarlecki (1994). Structured pre-

sentations and logic representations. Annals of Pure and Applied Logic 67

113–160.

Andy Harter and Andy Hopper (1994). A distributed location system for the

active office. IEEE Network 8 (1) 62–70.

Carl Hewitt and Henry Baker (1977). Laws for communicating parallel pro-

cesses. In: Gilchrist Bruce (ed.), Information Processing 77: 7th IFIP

World Congress, Elsevier 987–992.

David Hilbert and Wilhelm Ackermann (1928). Grundzüge Der Theoritischen

Logik. Springer. English translation by Robert E. Luck in “Principles of

Mathematical Logic”, Chelsea Publishing Company, 1950.

Charles A. R. Hoare (1978). Communicating sequential programs. Communi-

cations of the ACM 21 (8) 667–677.

Charles A. R. Hoare (1985). Communicating Sequential Processes. Prentice-Hall.

Kohei Honda and Mario Tokoro (1991). An object calculus for asynchronous

communication. In: Pierre America (ed.), Proc. Object-Oriented Pro-

194 Bibliography

gramming, 5th European Conference (ECOOP’91), Springer Verlag Lecture

Notes in Computer Science 512 133–147.

Willian A. Howard (1980). The formulae-as-types notion of construction. In:

James R. Hindley and Jonathan P. Seldin (eds.), To H. B. Curry: Essays

on combinatory logic, lambda calculus and formalism, Academic Press.

Cliff B. Jones (1983). Specification and design of (parallel) programs. In:

R. E. A. Mason (ed.), Information Processing 83: Proc. 9th IFIP World

Computer Congress, Elsevier 321–332.

Cliff B. Jones (1990). Systematic Software Development Using VDM. Prentice

Hall, 2nd edition.

Bengt Jonsson and Yih-Kuen Tsay (1995). Assumption/guarantee specifications

in linear time temporal logic. In: Peter D. Mosses, Mogens Nielsen, and

Michael I. Schwartzbach (eds.), Theory and Practice of Software Develop-

ment (TAPSOFT’95), Springer-Verlag Lecture Notes in Computer Science

915 262–276.

Ragui F. Kamel (1987). Effect of Modularity on System Evolution. IEEE

Software 4 (1) 48–54.

Ron Koymans (1987). Specifying message passing systems requires extending

temporal logic. In: 6th ACM Symposium on Principles of Distributed Com-

puting, ACM Press 191–204.

Jeff Kramer and Jeff Magee (1990). The evolving philosophers problem: Dy-

namic change management. IEEE Transactions on Software Engineering

16 (11) 1293–1306.

Fred Kröger (1987). Temporal Logic of Programs, EATCS Monographs on The-

oretical Computer Science 8. Springer-Verlag.

Fred Kröger (1990). On the interpretability of arithmetic in temporal logic.

Theoretical Computer Science 73 (1) 47–60.

Derek Lam, Jan Jannink, Donald C. Cox, and Jennifer Widom (1996). Mod-

elling location management in personal communication systems. In:

Proc. of International Conference on Universal Personal Communications

(ICUPC’96), IEEE Press 596–601.

Leslie Lamport (1994). The temporal logic of actions. ACM Transactions on

Programming Languages and Systems 16 (3) 872–923.

Manny M. Lehman and Lazlo Belady (1985). Program Evolution — Process of

Software Change. Academic Press.

Bibliography 195

Manny M. Lehman, Vic Stenning, and Wladislaw Turski (1984). Another look at

software design methodology. ACM SIGSOFT Software Engineering Notes

9 (2) 38–53.

Ulf Leonhardt and Jeff Magee (1996). Towards a general location service for

mobile environments. In: Proc. 3rd International Workshop on Service in

Distributed and Networked Environments (SDNE’96), IEEE Press 43–50.

Karl J. Lieberherr, Ignacio Silva-Lepe, and Cum Xiao (1994). Adaptive object-

oriented programming using graph-based customisation. Communications

of the ACM 37 (5) 94–101.

Barbara H. Liskov and Stephen N. Zilles (1975). Specification techniques for

data abstractions. IEEE Transactions on Software Engineering 1 (1) 7–19.

Zhiming Liu and Mathai Joseph (1992). Transformation of programs for fault-

tolerance. Formal Aspects of Computing 4 442–469.

Pattie Maes (1987). Concepts and experiments in computational reflection. In:

Proc. Object-Oriented Programming Systems, Languages and Applications

(OOPSLA’87), ACM Press 147–155.

Tom Maibaum and Wladyslaw Turski (1984). On what exactly is going on when

software is developed step-by-step. In: Proc. 7th International Conference

on Software Engineering (ICSE’84), IEEE Computer Society Press 525–

533.

Tom Maibaum, Martin Sadler, and Paulo Veloso (1984). Logical specification

and implementation. In: Mathai Joseph and Rudrapatna Shyamasundar

(eds.), Proc. 4th Conference on Foundations of Software Technology and

Theoretical Computer Science, Springer-Verlag Lecture Notes in Computer

Science 181 13–30.

Tom Maibaum, Paulo A. S. Veloso, and Martin Sadler (1985). A theory of ab-

stract data types for program development: Bridging the gap? In: Hartmut

Ehrig et al. (eds.), Proc. International Conference on Theory and Practice

of Software Development (TAPSOFT’85), vol. II, Springer Verlag Lecture

Notes in Computer Science 185 214–230.

Zohar Manna and Amir Pnueli (1979). The modal logic of programs. In: Her-

mann A. Maurer (ed.), Proc. 6th International Symposium on Automata,

Languages and Programming (ICALP’79), Springer-Verlag Lecture Notes

in Computer Science 71 385–410.

Zohar Manna and Amir Pnueli (1983). How to cook a temporal proof system for

196 Bibliography

your pet language. In: Proc. 10th Symposium on Principles of Programming

Languages, ACM Press 141–154.

Zohar Manna and Amil Pnueli (1989). The anchored version of the temporal

framework. In: Jaco W. de Bakker, Willem-Paul de Roever, and Grzegorz

Rozenberg (eds.), Linear Time, Branching Time and Partial Order in Logics

and Models for Concurrency, Springer-Verlag Lecture Notes in Computer

Science 354 200–284.

Satoshi Matsuoka (1993). Language Features for Re-use and Extensibility in

Concurrent Object-Oriented Programming. PhD thesis, University of Tokyo,

Japan.

Peter J. McCann and Gruia-Catalin Roman (1998). Compositional program-

ming abstractions for mobile computing. IEEE Transactions on Software

Engineering 24 (2) 97–110.

José Meseguer and Narciso Mart́ı-Oliet (1995). From abstract data types to

logical frameworks. In: Egidio Astesiano, Gianna Reggio, and Andrzej

Tarlecki (eds.), Recent Trends in Data Type Specificaiton: 10th Workshop

on Specification of Abstract Data Types, Springer-Verlag Lecture Notes in

Computer Science 906 48–80.

José Meseguer (1989). General logics. In: Hans Dieter Ebbinghaus et al. (eds.),

Logic Colloquium 87, North Holland 275–329.

José Meseguer (1990). A logical theory of concurrent objects. In: Jerry L.

Achibald and K. C. Burgess Yakemovic (eds.), Proc. Object-Oriented Pro-

gramming, 4th European Conference and Object-Oriented Programming

Systems, Languages and Applications (ECOOP/OOPSLA’90), ACM Press

101–115.

José Meseguer (1992). Conditional rewriting logic as a unified model of concur-

rency. Theoretical Computer Science 96 (1) 73–155.

Robin Milner, Joachim Parrow, and David Walker (1992). A calculus of mobile

processes, I and II. Information and Computation 100 (1) 1–40 and 41–77.

Robin Milner, Joachim Parrow, and David Walker (1993). Modal logics for

mobile processes. Theoretical Computer Science 114 (1) 149–171.

Robin Milner (1980). A Calculus of Communicating Systems, Lecture Notes in

Computer Science 92. Springer-Verlag.

Robin Milner (1983). Calculi for synchrony and asynchrony. Theoretical Com-

puter Science 25 267–310.

Bibliography 197

Robin Milner (1989). Communication and Concurrency. Prentice-Hall.

Robin Milner (1996). Semantic ideas in computing. In: Ian Wand and Robin

Milner (eds.), Computing Tomorrow: Future Directions in Computer Sci-

ence, Cambridge University Press 246–283.

Fredrik Orava and Joachim Parrow (1992). An algebraic verification of a mobile

network. Formal Aspects of Computing 4 497–543.

Susan Owicki and David Gries (1976). An axiomatic proof technique for parallel

programs. Acta Informatica 6 319–340.

Susan Owicki and Leslie Lamport (1982). Proving liveness properties of concur-

rent programs. ACM Transactions on Programming Languages and Systems

4 (3) 455–495.

Paritosh K. Pandya and Mathai Joseph (1991). P-A logic: a compositional proof

system for distributed systems. Distributed Computing 5 37–54.

Francesco Parisi-Presicce and Alfonso Pierantonio (1994). An algebraic the-

ory of class specification. ACM Transactions on Software Engineering and

Methodology 3 (2) 166–199.

David L. Parnas (1978). Designing software for ease of extension and contraction.

In: Proc. 3rd International Conference on Software Engineering (ICSE’78),

IEEE Computer Society Press 264–277.

Lawrence Paulson (1994). Isabelle: A generic theorem prover, Lecture Notes in

Computer Science 828. Springer-Verlag.

Amir Pnueli (1977). The temporal logic of programs. In: Proc. 18th Symposium

of Foundations of Computer Science, IEEE Press 45–57.

Amir Pnueli (1985). In transition from global to modular temporal reasoning

about programs. In: Krzystof R. Apt (ed.), Logics and Models of Concur-

rent Systems, NATO ASI Series 13, Springer -Verlag 123–144.

Amir Pnueli (1985). Linear and branching structures in the semantics and logics

of reactive systems. In: Wilfried Brauer (ed.), Proc. 12th International

Colloquium on Automata, Languages and Programming, Springer-Verlag

Lecture Notes in Computer Science 194 15–32.

Michel Raynal and Masaaki Mizzymo (1993). How to find his way in this jungle

of consistency criteria for distributed shared memories. In: Proc. 4th Work-

shop on Future Trends of Distributed Computing Systems, IEEE Computer

Society Press 340–346.

198 Bibliography

Gruia-Catalin Roman, Peter J. McCann, and Jerome Y. Plun (1997). Mobile

UNITY: reasoning and specificaton in mobile computing. ACM Transac-

tions on Software Engineering and Methodology 6 (3) 250–282.

Mark Ryan, José L. Fiadeiro, and Tom Maibaum (1991). Sharing actions and

attributes in modal action logic. In: Takayasu Ito and Albert Meyer (eds.),

Theoretical Aspects of Computer Software, Springer Verlag Lecture Notes

in Computer Science 526 569–593.

Vladmir V. Rybakov (1997). Admissibility of Logical Inference Rules, Studies in

Logic and the Foundations of Mathematics 136. Elsevier.

Czes law Ryll-Nardzwski (1952). The role of the axiom of induction in elementary

mathematics. Fundamenta Mathematicae 39 239–263.

Motoshi Saeki, Takeshi Hiroi, and Takanoru Ugai (1993). Reflective specifi-

cation: Applying a reflective language to formal specifications. In: Proc.

7th International Conference on Software Specification and Design, IEEE

Computer Society Press 204–213.

Hanan Samet (1984). The quadtree and related hierarchical data structures.

ACM Computing Surveys 2 (2) 187–260.

Beverly Sanders, Berna L. Massingill, and Svetlana Kryukova (1997). Spec-

ification and proof of and algorithm for location management for mobile

communication devices. In: Dominique Mery (ed.), Proc. 2nd. Interna-

tional Workshop on Formal Methods for Parallel Programming: Theory and

Applications, 9–23.

Krister Segeberg (1970). Modal logic with linear alternative relations. Theoria

36 301–322.

Amı́lcar Sernadas, Cristina Sernadas, and José Félix Costa (1995). Object spec-

ification logic. Journal of Logic and Computation 5 (5) 603–630.

Shaul Simhi, Vered Gafni, and Amiram Yehudai (1996). Combining reflection

and finite state diagrams for design enforcement. Theory and Practice of

Object Systems 2 (4) 269–282.

A. Prashad Sistla, Emerson M. Clarke, Nissim Francez, and Albert R. Meyer

(1984). Can message buffers be axiomatised in linear temporal logic? In-

formation and Computation 63 (1–2) 88–112.

J. Michael Spivey (1989). The Z Notation: A Reference Manual. International

Series in Computer Science. Prentice-Hall.

Mike Spreitzer and Marvin Theimer (1994). Architectural considerations for

scalable, secure, mobile computing with location information. In: Proc.

Bibliography 199

14th International Conference on Distributed Computing Systems, IEEE

Computer Society Press 29–38.

Richard M. Stallman (1981). EMACS: The extensible, customisable self-

documenting display editor. AI memo 519a, Artificial Intelligence Labo-

ratory, Massachusetts Institute of Technology.

Colin Stirling (1992). Modal and temporal logics. In: Sampson Abramsky, Dov

Gabbay, and Tom Maibaum (eds.), Volume II, Oxford Science Publications

Handbook of Logic in Computer Science 477–563.

Daniel Sturman and Gul Agha (1995). A protocol description language for

customising failure semantics. In: Proc. 13th Symposium on Reliable Dis-

tributed Systems, IEEE Computer Society Press 148–157.

Manfred Egon Szabo (ed.) (1969). The Collected Papers of Gerhard Gentzen.

North-Holland.

Andrzej Sza las (1988). Towards the temporal approach to abstract data types.

Fundamenta Informaticae 11 49–64.

Yasayuki Tahara et al. (1996). An algebraic semantics of reflective objects. In:

Kokichi Futatsugi and Satoshi Matsuoka (eds.), Proc. 2nd International

Symposium on Object Technologies for Advanced Software (ISOTAS’96),

Springer-Verlag Lecture Notes in Computer Science 1049 173–189.

Carolyn Talcott (1996). An actor rewriting theory. In: 1st International Work-

shop on Rewriting Logic and its Applications, North Holland Electronic

Notes in Theoretical Computer Science 4 360–383.

Carolyn Talcott (1996). Interaction semantics for components of distributed

systems. In: Elie Najm and Jean-Bernard Stefani (eds.), Proc. 1st IFIP

International Conference on Formal Methods for Open Object-Based Dis-

tributed Systems (FMOODS’96), Chapman and Hall.

Carolyn Talcott (1997). Composable semantic models for actor theories. In:

Mart́ın Abadi and Takayasu Ito (eds.), Theoretical Aspects of Computer

Science: 3rd International Symposium (TACS’97), Springer Verlag Lecture

Notes in Computer Science 1281 321–364.

Bent Thomsen (1991). Calculi for Higher-Order Communicating Systems. PhD

thesis, Department of Computing, Imperial College of Science, Technology

and Medicine, London, UK.

Mario Tokoro (1993). The society of objects. In: Jerry L. Achibald and Mark C.

Wilkes (eds.), Adendum to the Proc. Object Oriented Programming Systems,

Languages and Applications (OOPSLA’93), ACM Press.

200 Bibliography

Anne S. Troelstra and Helmut Schwichtenberg (1996). Basic Proof Theory.

Cambridge University Press.

Wladislaw Turski and Tom Maibaum (1987). The Specification of Computer

Programs. Addison Wesley.

Johan van Benthem (1984). Correspondence theory. In: Dov Gabbay and Franz

Guentener (eds.), Handbook of Philosophical Logic, volume II, D. Reidel

167–248.

Dirk van Dalen (1994). Logic and Structure. Springer Verlag, 3rd edition.

Jean van Heijenoort (ed.) (1967). From Frege to Gödel: A source Book in

Mathematical Logic. Harvard University Press, 3rd edition.

Paulo A. S. Veloso (1992). Yet another cautionary note on conservative exten-

sions: A simple case with a computing flavour. Bulletin of the European

Association for Theoretical Computer Science 46 186–192.

Nalini Venkatasubramanian and Carolyn Talcott (1993). A meta architecture

for distributed resource management. In: Proc. Hawaii International Con-

ference on System Sciences, IEEE Computer Society Press 124–133.

Mitchell Wand and Daniel P. Friedman (1988). The mystery of the tower re-

vealed: A non-reflective description of the reflective tower. In: Pattie Maes

and Daniela Nardi (eds.), Meta-Level Architecture and Reflection, North

Holland 111–123.

Peter Wegner (1987). Dimensions of object-based language design. In: Proc.

Object Oriented Programming Systems, Languages and Applications (OOP-

SLA’87), ACM Press 168–182.

Roel J. Wieringa, Wiebren de Jonge, and Paul Spruit (1995). Using dynamic

classes and role classes to model object migration. Theory and Practice of

Object Systems 1 (1) 61–83.

C. Donald Wilcox and Gruia-Catalin Roman (1996). Reasoning about places,

times and actions in the presence of mobility. IEEE Transactions on Soft-

ware Engineering 22 (4) 225–247.

Alberto Zanardo and José Carmo (1993). Ockhamist computational logic: Past-

sensitive necessitation for CTL∗. Journal of Logic and Computation 3 (3)

249–268.

Alberto Zanardo (1996). Branching-time logic with quantification over branches:

The point of view of modal logic. Journal of Symbolic Logic 61 (1) 1–39.

Notation Index 201

Notation Index

p def
= q (definition of p by q) . 21

p ≡ q (syntactic identity of p and q) . 55

ℵ0 (cardinality of N) . 55

|S| (cardinality of S) . 55

cod f (codomain of f) . 20

g ◦ f (composition of f and g) .20

S : R (concatenation of S and R) .21

`∆ (derivability relation over ∆) . 26

Pr∆(Ψ, p) (derivations of p from Ψ over ∆) . 26

dom f (domain of f) . 20

ε (empty sequence) . 21

{ } (empty set) . 21

`∆ (entailment relation over ∆) . 21

F : A→ B (functor F from A to B) . 21

ida (identity morphism of a) . 20

p ∼= q (isomorphism between p and q) .30

Mod(∆) (category of models of ∆) . 24

a
f
→ b (morphism f from a to b) . 20

morph C (morphisms of C) . 20

N (set of natural numbers) . 55

obj C (objects of C) . 20

P (S) (power set of S) .21

P+(S) (powerset of S without { }) . 55

|=∆ (satisfiability relation over ∆) . 24

S∗ (set of sequences of S-elements) . 21

Sfin (set of finite sequences of S-elements) . 21

S∞ (set of infinite sequences of S-elements) . 21

S+ (set of non-empty sequences of S-elements) . 21

p[x\t] (substitution of all occurrences of x for t in p) .55

p{q\r} (substitution of some occurrences of q by r in p) . 55

Th∆(Ψ) (theory generated by Ψ over ∆). .23

202 Subject Index

Subject Index

abstract data type (ADT) 11
abstraction . 11

accuracy . 150, 154
actor model . 94

actor primitive

become 101, 142
deliv (message delivery) 100

init (behaviour initialisation) . 100
new (actor creation) 100

send (message dispatch) 100

adaptability . 4
adaptivity . 4

admissibility, INTRO 69, 89
amalgamated sum (of sets) 32

assignment . 74

assumption. .26
asynchrony . 93

axiom
associativity (morphisms) 20

Barcan

G . 180
GF . 180

A . 180
F . 180

FG . 180

X . 180
E . 180

commutativity
G and A 178

G and X 177
F and X . 177

X and A 178

E and F . 179
E and X .179

De Morgan 176
distributivity

G over ∧ 177

∧ over FG 177
∧ over ∨ . 176

∧ over E .178
A over ∧ 178

∃ over ∨ . 179

∀ over ∧ . 179
∀ over → 179

F over ∧ . 177

F over ∨ . 177
V over ∧ 176

V over ∨ 176
X over ∧ 177

∨ over G 177

∨ over GF177
∨ over ∧ . 176

∨ over A 178
E over ∨ .178

→ over ∧ 176

→ over ∨ 176
→ over → 30

double negation 175
duality

G and F .176

A and E .178
∀ and ∃ . 179

exchange
∀ and ∃ . 179

extra-logical 24

fixed point
G . 177

F . 177
V . 177

U . 177

frame . 64
functionality

X . 177
attributes 180

functions 180
idempotence

G . 176

F . 176
identity (morphisms) 20

induction
branching. 179

mathematical 16

temporal . 42
transfinite 66

irreflexivity . 66
logical . 26

monotonicity

G . 176
X . 177

permutation, → 34, 175

Subject Index 203

progressivity 66
reflexivity

G . 176
→. .34, 175
equality. .180

stability. .68
termination . 68
transitivity

W . 178
equality. .180
left, → 34, 175
right, → 34, 175

weakening, → 30
axiomatisation . 27

base-level object 145
base-level representation 151
branching time structure 72

calculus
ν (nu). .6
π (pi) . 6
Lω1ω . 155
λ (lambda), typed 15
linear, implicative 34
process . 6

category . 20
CAT (categories) 24
Cop (C-opposite) 24
C→ (C-functions) 58

C
◦
→ (C-partial functions) 58

FinAx (finitely axiomatizable) . 24
FinSet (finite sets) 30
Mod (models) 24
Mod∆ (models of ∆) 78
Pres (theory presentations) 24
Prog (programs) 19
Set (sets) . 21
SigAct (actor signatures) 112
Sig (signatures).21
SpecAct (actor specifications) 114
Spec (specifications) 19
Theo (logical theories).23
Th (theories) 23
finitely co-complete 32

causal connection 145
change

dynamic . 2
functional . 3

structural . 3

static . 2

endogenous 2

exogenous . 2

class . 136

dynamic . 136

partition . 136

classification (of variables).58

closure (of a relation) 23

co-cone (of a diagram) 39

co-limit (of a diagram) 32

codomain (of a morphism) 20

communication

broadcasting 93

FIFO . 130

point-to-point 93

compactness . 23, 25

completeness 25, 88, 150

composability . 16

composition (of morphisms) 20

compositionality 17

conclusion. .26

concurrency . 44

configuration . 93

connective

= (equality) 58

En (enabledness) 49

G (non-strict always) 41

∧ (and) . 30

A (in any behaviour) 49

∃ (exists) . 55

∀ (for all) . 55

F (non-strict eventually) 41

V (strict strong until)41

X (next) . 41

∨ (or). .30

E (in some behaviour) 49

U (non-strict strong until) 41

W (non-strict weak until) 41
i
← (strict initial precedence) . . 101

← (strict precedence) 101

↔ (biconditional) 30

−◦ (lollipop) 34

¬ (negation) 30

→ (implication) 30

consensus problem 147

conservative extension 23

correctness . 154

204 Subject Index

customisability . 3

deadlock . 47, 131

decomposition (of proofs) 40
dereferencing. .100

derivability relation. 23, 26
diagram (of a property) 21

distributed system 93

domain (of a morphism).20

effectiveness . 29
entailment relation 21

entailment system 21
equality (of objects) 100

evolvability . 4

extensibility . 3, 4

failure . 147

failure detector.150

fairness 47, 53, 96, 105
faithfulness condition.26

finite axiomatizability 24

formula . 55
frame see branching time structure

frame problem . 44

full abstraction . 18
functor . 21

fusion closure 51, 73

implementation bias 18
incrementability . 37

inference rule . 26

modus ponens 30
actor

(absence of) communication 107
(absence of) response 107

communication 107

existence.106
invariance 106

response . 106

safety . 106
admissible . 29

anchored temporal induction . . . 43

derivable . 29
detachment . 30

generalisation

classical 55, 179
modal . 49

temporal . 41

hypothetical syllogism 175
introduction unconstrained symbol

69
rely-guarantee composition 118

general . 120
replacement.32, 176, 178–180
uniform substitution 31
well-founded induction 69

inheritance . 136
initial element (of a category) 32
institution . 24

π (pi) . 21
interaction . 93
interpretation (of a term) 74
interpretation between theories 23
interpretation structure 73
introspection . 146

language grammar 21
legal sentence . 21
limit closure . 51, 67
liveness . 43, 47
locality . 102
location information 158

acquisition . 159
management 159

logic . 25
CTL∗ . 50
CTL (Computation Tree Logic) 49
TLA (Temporal Logic of Actions)

43, 63, 66
first-order

classical15, 23, 27, 55
many-sorted

branching time. 64
first-order, classical, equality . 58
linear time 62

ω (omega) . 27
propositional

branching time. 49
classical . 30
intuitionistic 15, 31, 36
linear . 34
linear time 41

rewriting. .146
second-order

classical . 15
temporal . 8

endogenous 8

Subject Index 205

exogenous . 8
logical system . 29

message passing . 93
meta-level object 145
meta-relation . 152
mobility . 157
model . 24, see interpretation structure
model functor . 78
modularity 37, 54, 118
morphism . 20

actor signature.112
actor specification.113
faithful . 23

object (of a category) 20
openness . 3, 4, 93

prefix closure 51, 73
premise . 26
proof .27
proof calculus . 26

formal . 27
semi-formal . 27

proposition. .30
pushout (of a diagram) 32

realisability . 54
reconfigurability 4, 93
reduct (of a model) 74
reflection. .145

computational 4, 145
reflective language 145
rely-guarantee assertion 117
rely-guarantee discipline.117
reuse. .118

safety . 43, 47
satisfaction

formula . 75
program . 17

satisfaction condition.25
satisfaction relation 24
shared control . 93
shared memory. .93
signature . 21

actor. .96
actor, community 100
actor, extended 98

similarity type . 55

software architecture 145, 157

software artifact . 4
software component 93
soundness . 25

MSBTL+ . 91
MSBTL . 80

species . 137
state formula. 75

structurality
strong . 34

weak . 21, 36
substitution

function. .55

parallel . 57
property . 50

relation . 55
suffix closure 51, 73

symbol
action. .62

attribute . 62
constant . 55
extra-logical 21

flexible . 63
function. .55

logical . 21
predicate. .55

proposition . 30
rigid . 63

sort . 58
synchrony . 93

term . 55

theorem. 23
Upward Skolem-Löwenheim 25

theory . 13, 23
of arithmetic, Peano 15, 16

of arithmetic, temporal.88
theory presentation 24
traceability. .13

transformation
synchrony. .132

type . 136
type signature. .58

unconstrained flexible symbol 66
universal property. 21

valuation see assignment

variable . 55

206 Subject Index

flexible . 62
free . 55
rigid . 62
schematic . 31

willingness . 52

