
A Logico-Categorical Toolkit for Automated
Rigorous Software Development

Carlos Henrique C. Duarte1,2?

1 Univ. Estácio de Sá, Rua do Bispo 83, Rio de Janeiro, RJ, 20261-902, Brazil
2 BNDES, Av. República do Chile 100, Rio de Janeiro, RJ, 20001-970, Brazil

Abstract. We describe a toolkit which is devoted to support a rigorous
software development approach based on Category Theory and General
Logics. The toolkit consists in an integrated collection of interactive the-
ory manipulation and automated reasoning tools implemented using the
functional language Haskell. We also present a precise comparison of this
with other research efforts.

Keywords: Category Theory, General Logics, Automated Reasoning, For-
mal Methods, Software Development.

1 Introduction

Software development processes are inherently very intricate and have become
more and more demanding due to the introduction of new technologies and tools
that allow us to provide implementations for a widening range of non-functional
requirements, such as concurrency, distribution and mobility.

At the heart of some difficulties software engineers face during the develop-
ment process are the ineffectiveness and inadequacy of many ad hoc methods
and techniques that are in use today. Ideally, a software engineer should eas-
ily experiment with and validate the fuzzy notions gathered during requirement
elicitation activities. The manipulation of the validated notions should be trace-
able from the design to the implementation. In addition, many software artifacts
produced in this process should be reusable.

The usual way of satisfying all these needs is the adoption of software tools
such as toolkits and integrated development environments (IDEs) that facilitate
stepping forward in the process. It happens that no such software tool will be
surely effective without a degree of formality, in order, for instance, to avoid the
introduction of errors in designs and programs throughout the development.

A still promising approach to ensure the required level of formality in per-
forming software development activities is the integrated use of Category Theory
[9] and General Logics [18]. The former advocates the use of categorical notions
as a way of putting software artifacts together whereas the latter proposes the
adoption of many distinct logical structures in which to formulate and relate

? e-mail: carlos.duarte@computer.org; web: http://chcduarte.webs.com

these artifacts. The ability to switch logical systems is recognised as a desirable
feature in stepwise software development [16].

Conversely, software development approaches are not effective just due to well
established formal foundations. In order to instrumentalize a formal development
process, a set of software tools should be adopted, ranging from model checkers,
proof checkers and theorem provers to facilities for manipulating general logi-
cal structures. Respectively, these tools can be adopted at least in the tasks of
requirement experimentation and validation, correctness assurance, traceability
and reuse. An integrated environment to support verification based and trans-
formation/synthesis based software development would be an ultimate goal in
structuring an effective formal approach.

In this paper, we present a collection of software tools (toolkit) devoted to
support the approach and the functionalities described above. Certainly, full
support for all these needs should be provided by an IDE, but our strategy to
achieve this goal eventually is to develop first a very generic toolkit to serve as
a basis for further developments. In a way, this research effort can be regarded
as an attempt to provide a generic implementation for the theoretic framework
that instantiates a paradigm proposed in [11].

We choose the functional language Haskell [14] as a basis for the proposed
developments. The choice of a/the language is justified not only due to the
significant amount of symbolic computation required (which we believe to be
more precariously supported by other programming paradigms or integrated
tools), but also due to the availability of reliable and efficient interpreters and
compilers for Haskell, as well as of some automated reasoning tools that can be
subsequently integrated into the framework.

Contributions. To our knowledge, the described research is the first at-
tempt to provide a full implementation, as part of a generic rigorous software
development infrastructure, for all the general logical notions described in [18]
(but see Section 6 for related work). In carrying out this research, we have also
developed a framework of foundational type classes and abstract data types in
Haskell that appears to be an innovation.

Organization. Section 2 presents the description of a distributed voting
system that is used as an example throughout the paper to illustrate our ideas.
Section 3 contains an overview of the categorical and general logical notions that
are most relevant for developing our work. Section 4 describes the implementa-
tion of the proposed toolkit. Next, in Section 5, we illustrate how this toolkit
can be used for rigorous software development. At the end, we present some
conclusions and prospects for future research.

2 The Distributed Voting System Example

The issue of performing large scale geographically distributed elections with
the support of on-line interactive software systems distributed over computer
networks has been extensively discussed. We use as an example in this paper the
development of a solution for this problem.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

votedA votedB

draw

selectedA selectedB

noVote noVotes

confirmed

voteA1|voteA2

voteA1|voteA2

voteB1&voteB2voteA1&voteA2

voteB1|voteB2

voteB1|voteB2

selectB&

¬confirmcancel

confirm / voteB

voteA voteB

voteB1&voteA2

selectA&

confirm / voteA

voteA1&voteB2cancel

winnerA winnerB

¬confirm

selectB&¬selectA&confirm /selectA&¬selectB&confirm /

voteA1|voteA2 voteB1|voteB2

v v

? ?

? ?? ?

�
�
�
�
�
�
�
�
�
�
�
�

? ?

�
�
�
� ? ??? ??

? ?

6 6

�-

(b) Voting Server(a) Voting Terminal

Fig. 1. Simplified Voting System Behaviour Specification.

An electronic election process is normally performed with the support of so
called voting machines (also called terminals) scattered throughout the whole
region involved in the process. There is at least one server connected to each
machine so that votes can be collected from electors and dispatched to the server.

There are quite a few requirements that a solution must meet:

1. Each elector may choose at most one out of many candidates;
2. It must be possible for the elector to change its mind before confirming the

choice;
3. Once the selection of a candidate is confirmed, it is impossible to change it;
4. Each vote is confidential. In particular, the server only becomes aware of

each vote for a candidate, but never of the identity of the respective elector;
5. The election final result is the only information made globally available by

the server after the established number of votes are collected;
6. The result of the election may be a winning candidate or it may end in a

draw;
7. The solution should be configurable, in the sense that it should be possible

to define the (number of) candidates at deployment time;
8. The solution should be scalable, in the sense that it should be possible to

increase the number of locations and terminals without design changes.

We choose to structure our design matching the physical components re-
quired in the solution. As a matter of simplification, we assume that the election
is to be carried out involving just two candidates and two geographically sep-
arated electors, consequently requiring the support of only one server and two
terminals. Later on, we outline how our solution can be extended, satisfying

1..1

confirm()
cancel()
selectB()
selectA()

confirmed:Bool

votedA:Bool
votedB:Bool2..2

Terminal Server

voteA1()
voteB1()
voteA2()
voteB2()

selectedA:Bool
selectedB:Bool

voteA()
voteB()

winnerA()
winnerB()
draw()

Fig. 2. Simplified Voting System Structure Specification.

the configurability and the scalability requirements. We do not address here the
dissociation of each terminal from a elector, since it would require a complex
unique identification scheme for electors.

The behavior of each kind of object in our solution is described by the state
transition diagrams presented in Figure 1. When each voting machine is turned
on, no votes have been accounted for. By pressing one of the two selection but-
tons, the elector may choose out of candidates A and B. It is possible to cancel
a selection, but only if this choice is not confirmed yet. A vote is issued with
the confirmation. At the server side, votes are counted up to the time when the
two electors have confirmed their choices. The interaction between the two kinds
of objects is unidirectional and synchronous, with each voting machine possibly
generating an event of kind vote so that it can be detected by the server.

The rather simple structure of the system with this configuration is depicted
in Figure 2. The state of a terminal is determined by the information if either
candidate has been chosen and the respective vote confirmed or else if the ma-
chine has just been turned on or a vote canceled. The state of the server is
determined by the information concerning whether or not a vote was received
in favor of each candidate. The methods of each object are those required to
perform the state transitions presented in the respective behavior diagrams.

3 Categorical and General Logical Notions

Category Theory has been proposed as a foundation for Mathematics and Com-
puter Science alternative to Set Theory. Not only these theories are formulated
in substantially different grounds but they also have distinct focuses of concern.

Whereas Set Theory is structured in terms of sets and their elements, Cate-
gory Theory is founded upon the notion of arrow or morphism between objects.
A very pragmatic definition extracted from [23] is presented below:

Definition 1 (Category). A category is a graph (O,A, s, t) whose nodes O
are called objects and edges A are called arrows. When applied to an arrow
f : a→ b, s returns its domain a and t returns its co-domain b. For each a in O,

there is an identity arrow ia : a → a and for each pair f : a → b and g : b → c
there is another composition arrow g ◦ f : a → c of f with g. Moreover, the
following equations must hold for all objects a, b, c, d and arrows f : a → b,
g : b→ c and h : c→ d: (h ◦ g) ◦ f = h ◦ (g ◦ f) and f ◦ ia = f = ib ◦ f .

Sets, groups and rings, as well as some kinds of specifications, programs and
proofs, with their respective morphisms, constitute examples of categories.

The study of General Logics is formulated precisely in terms of categorical
notions. Perhaps the most important notions for formulating such study are those
of theory (presentation) and morphism. A theory presentation consists in a set
of symbols, called signature, together with a set of sentences, called axioms. An
easy way of defining presentation morphisms is to propose signature morphisms,
which relate symbols in different signatures, and inductively lift them to the
sentences in each set of axioms.

Theory presentations are formulated in terms of a language, a morphism
that relates the category of signatures to the category defining the shape of
sentences (being a functor in this way), and a (reflexive, monotone and transitive)
consequence relation∼ which, by way of transitive closure, allows us to determine
the corresponding theories, sets of sentences entailed by the presentation axioms.
An entailment system is defined precisely by a category of signatures, a language
functor and a consequence relation [18]. Entailment systems may be strongly or
weakly structural depending on the preservation or not of consequences when
translated by lifted signature morphisms [8].

Entailment systems may be defined semantically or proof-theoretically. In
order to define a consequence relation semantically, it is necessary to propose
a functor associating each signature to a respective category of models (model
functor). A satisfaction relation |= is used to attest whether or not a sentence
is true in a specific model. A category of signatures, language and model func-
tors and a satisfaction relation for which morphisms preserve truth, seen as a
whole, define what is called an institution [10]. Seen together with an entailment
system with a naturally isomorphic language (that is, there is an isomorphism
between the respective language functors, defining a natural transformation in
this way) and whose consequence is determined by the satisfaction relation, in-
stitutions define what is called a logic. Logics defined in this way automatically
meet the soundness requirement, which states that every entailed sentence is
valid, meaning that it is satisfied by all models.

A consequence relation may also be approximated (exactly or not) by a deriv-
ability relation `, which is normally defined in terms of a set of axiom schemes
and inference rules. A derivability relation based on a specific language, together
with a corresponding category of proofs, define what is called a proof calculus.
In some cases, the exact definition of a consequence relation in this way is not
possible, due to the logical system not being complete (the converse of the sound-
ness requirement does not hold, in other words). This is not, however, a problem
since proof calculi for some logics are useful even without being complete. A
logic endowed with a proof calculus determines a logical system.

Specification CTerminal
actions select, vote, cancel, confirm
attributes selected, confirmed
axioms
beg→ ¬selected (1.1)
beg→ ¬confirmed (1.2)
select→ ¬selected ∧ ¬confirmed ∧ ¬cancel (1.3)
select→ X(selected) (1.4)
(select ∨ cancel) ∨ (selected→ X(selected)) (1.5)
(select ∨ cancel) ∨ (¬selected→ X(¬selected)) (1.6)
cancel→ ¬confirmed ∧ ¬confirm (1.7)
cancel→ X(¬selected) (1.8)
confirm→ ¬confirmed (1.9)
confirm ∧ selected→ X(vote ∧ confirmed) (1.10)
confirm ∨ (confirmed→ X(confirmed)) (1.11)
confirm ∨ (¬confirmed→ X(¬confirmed)) (1.12)
vote→ selected ∧ confirmed (1.13)
confirmed→ X(¬vote) (1.14)

�
�

��	

@
@
@@R

@
@
@@R

�
�
��	

R

......................

66

?

....................................	

......................

?

.............

�
......................

I
......................

6
....................................

RawTerminal

Terminal

STerminal

CTerminalCTerminal

Regulator

SelectorSelector

RTtoCT

StoRStoR

STtoTStoCT StoCT

RTtoCT

CTtoST CTtoST

RTtoST

StoT StoT

RtoT

Fig. 3. Formal Specification of Voting Terminals.

Let us return to our example and present concrete instances of some of these
notions. Some others will be exemplified in Section 5.

First note that there is an interesting symmetry in the state transition di-
agram for voting machines presented in Figure 1, in that the left half of the
diagram is identical to the right half, differing only due to the choice of names
of intermediary states and of the respective transitions. Symmetries like this
usually consist in an opportunity for proposing elegant designs and eventually
reduce the required work.

We are going to attempt to define here a voting machine almost only in terms
of one of its halves. This can be carried out by proposing a diagram equivalent
to that in Figure 1 defined by two connected identical diagrams, one for each
candidate, but with some shared structure, namely the initial and final states, as
well as the transitions that lead to them. Instead of doing this using diagrams,
though, we are going to adopt a temporal propositional logical system.

As expected, we define the half voting machine, here called CTerminal,
using a theory presentation. Transition labels in the diagram are captured as
action symbols in the presentation signature. State labels are represented by
attribute symbols. The resulting signature is presented at the top of Figure 3.

The theory presentation axioms are written using a language defined in terms
of signature symbols together with classical and temporal propositional connec-
tives. In particular, the nullary connective beg denotes the instant in which the
time line begins and X denotes the next instant in relation to a given one. The
time dependent interpretation of this kind of connective, as well as the standard

interpretation of the classical propositional connectives, naturally lead to the
definition of an institution, as shown in [4], wherein an associated sound proof
calculus is proposed. Such proof calculus shall be presented here in Section 4.

Still concerning our specification, axioms (1.1) and (1.2) respectively state
that initially neither has a candidate been selected nor a selection been con-
firmed. Axiom (1.3) postulates that a selection may only happen if the candidate
has not been selected nor the choice confirmed yet, and in particular cannot be
performed simultaneously with a cancellation. Moreover, axiom (1.4) says that
immediately after a selection, this occurrence is recorded. Note that (1.5-1.6)
assert that the value of selected may be changed only due to the occurrence of
select or cancel. Axioms (1.7-1.8) and (1.9-1.10) concerning cancel and confirm,
respectively, are analogous to (1.3-1.4) regarding select.

A critical part of the specification is the control over occurrences of vote.
Any confirmation of a selection triggers the announcement of the respective vote
(1.10). However, the vote can only be announced if the respective candidate was
selected and the choice has been confirmed (1.13). In addition, the status of
whether or not a choice has been performed can only be changed if the elector
performs a confirmation (1.11-1.12). Axiom (1.14) ensures that this happens
only once.

A way of putting two CTerminal specifications together and obtain a de-
scription of the voting machines presented in Section 2 is to propose first a
mediating theory presentation that contains the corresponding shared struc-
ture. This is called RawTerminal here, since it abstracts away the fact that
terminals can be used to choose candidates. That is, the signature of presenta-
tion RawTerminal contains only the symbols cancel, confirm and confirmed.
Since we use theory morphisms to relate these objects (set inclusion functions),
not even the symbol names are required to be the same. The axioms of this
presentation consist in local versions of (1.2), (1.7), (1.9), (1.11) and (1.12).

Next, in order to obtain a composition of two CTerminal specifications,
called STerminal in our diagram, we compute a standard categorical construc-
tion called pushout, which consists in the sum of the given presentations amal-
gamated through their shared symbols and axioms. The resulting presentation
is unique up to isomorphism, meaning that any other combination of the given
parts along the original morphisms can be shown to be related to the produced
amalgamation by a unique isomorphism. A generalization of this categorical con-
struction, called co-limit, can be used to put together many CTerminals, thus
showing how to satisfy the configurability requirement.

Our construction is still not complete yet, since the composed CTerminals
can interfere into the behavior of one another. Specifically, an elector must be
prevented from choosing both candidates simultaneously or another candidate
without canceling its previous choice, since this could cause an undesirable be-
havior in case an attempt of confirmation would be performed later on. That is,
the following properties would not be automatically ensured:

selectA→ ¬selectB ∧ ¬selectedB (1)

selectB→ ¬selectA ∧ ¬selectedA (2)

@
@
@@R

�
�

��	

@
@
@@R

�
�
��	

@
@
@@R

�
�
��	

�
�

��	

@
@
@@R

- �
?

.................................... ?

................ ?

....................................

SServer

Server STServer

Connector Connector

TerminalTerminal

STServer

Fig. 4. Configuration of the Voting System.

To produce the required specification, we use again a pushout construction, this
time adopting Selectors as mediators, empty axiom set presentations whose
symbols are mapped into those of CTerminal and Regulator, which in turn
has (1) and (2) as its only axioms. This specification is called Terminal here.

We omit the design of voting servers in this paper, since it can be developed
along the same lines, in particular aiming to satisfy the scalability requirement
in the same way we designed voting machines to satisfy configurability. The
configuration of the whole system is presented in Figure 4.

4 Outline of the Toolkit

We have developed an integrated collection of interactive tools to support rigor-
ous software development activities according to the approach described so far.
The toolkit can be divided in two parts: a collection of foundational type classes
and abstract data types (ADTs), and an implementation in the form of ADTs
of the general logical notions described in Section 3. The structure of both parts
of the toolkit is illustrated by the UML class diagram presented in Figure 5.

Central to our implementation of foundational type classes and ADTs is
the observation that the Haskell language (and other currently existing pro-
gramming languages that provide support for infinite data objects) ignore some
foundational issues concerning Set Theory, thus providing a naive implemen-
tation for sets. This is, however, a crucial issue when we attempt to address
Category Theory using the programming language, since some of these issues
arise already in the definition of what is understood as a category. Specifically,
only in particular cases the objects O and the arrows A of a category constitute
sets, the reason for making reference to them as collections in general. In order
to provide a more faithful treatment of Category Theory, we depart from the
built in implementation of sets in Haskell.

The most generic software artifacts of our framework are retainers, contain-
ers, closure classes and classes. Their type classes define the interfaces that must
be followed by their respective parametric instance types. Retainers are objects
that can be used to store data. If facilities for retrieving data from a retainer are

................
......
....

......
....

................

............................
....

............
....

............
....

............
....

................
......
....

......
....

................
......
....................

......
....

6

................

................

6

6 6

6

6

............
....

............
....

6

6

-

�

................

................

-
?

6

�

6

Container

ClosureClass Morphism

Category

EntailSysInstitution

Logic

Set/SmallCat

Class

LogicalSys

SymbolCollection

Sentence
Signature

Set

<<interface>> <<interface>> <<interface>>

<<interface>><<interface>><<interface>>

<<interface>>

Retainer

ProofCalc/Deriv

1

1

1

*

*

1

*

*

Formula

TheoPres1

SigCat

*
1

1
1

*

1

Fig. 5. Structure of the Toolkit.

available, then we in fact have a container. Closure classes and classes have the
standard interpretation from Class Theory: their instances are collections and
sets. The only distinction between closure classes and classes is that the latter
also implement higher order methods for computing power classes and iterations
of class operations throughout the members of a class.

The other roots of our software artifact hierarchy are morphisms and cate-
gories, on the one hand; symbols and sentences, on the other. Morphisms may be
defined extensionally or intentionally, in which case a Haskell function may be
adopted. Categories are defined in terms of a base data type and are instantiated
as small categories or set categories. The corresponding ADTs provide facilities
for calculating with categories, such as computing pullbacks and pushouts, lim-
its and co-limits. In their turn, symbols have some structure to carry identifiers,
types and possibly some annotations. For instance, the fact that a symbol de-
notes an attribute or an action as proposed in our specification is recorded as a

symbol annotation. Many functions are provided by sentences, such as traversal,
normalisation, sub-sentence search and substitution.

The remaining software artifacts of our framework are, strictu sensu, im-
plementations of the general logical structures described in Section 3. These
implementations support some standard type class interfaces, such as for test-
ing equality, well definedness and for coersing and parsing values. Of particular
interest in our work are the categorical facilities for lifting morphisms to higher
order structures. For instance, sets of symbol morphisms can be lifted to sig-
nature morphisms, which can be lifted to sentence morphisms, which in turn
can be lifted to theory presentation morphisms. Lifting is, recognisably, a very
important feature in logical frameworks [13, 21].

The facilities for supporting automated reasoning are also an important fea-
ture of our toolkit. In fact, the general logical approach facilitates tool imple-
mentation and their integration with third party tools, since the interfaces are
explicit and well defined. For instance, any automated reasoning tool must con-
form with one of the following types in order to be able to interact with the tools
we have implemented (where s denotes any type of Sentence):

type ModelChecker = Institution s o -> s -> Maybe Bool

type ProofChecker = TheoPres s -> TheoPres s -> Derivation s -> Bool

type AutoTheoProver = TheoPres s -> TheoPres s -> s -> Maybe (Derivation s)

In particular, proof checking and theorem proving rely on theory presenta-
tions both at the base and meta logical levels, since each proof calculus pre-
sentation is given in terms of a meta theory presentation and the support for
producing derivations may also depend upon a base level presentation. A full
implementation of the calculus adopted in Section 3 is presented in Figure 6.

Concerning the definition of proof calculi, our work is based exclusively on
formulae and their sets, since other structures such as lists and bags do not ap-
pear to provide substantial extra expressiveness, whereas the implementation of
particular list or bag based (sequent) calculi would require a considerable amount
of work. Moreover, at the present moment we do not allow auxiliary definitions
to be made within a calculus, avoiding the use of meta-level substitution. These
definitions must be made at the logical level, using the iff connective.

At the meta-level of our toolkit, each proof calculus definition is treated as a
conventional presentation, meaning that logical connectives are defined as meta-
signature symbols and inference rules as meta-logical axioms, as show in Figure
6. Meta-theories can be provided as input to a compiler, which performs a type
inference process and generates Haskell code afterwards. Sentences written in
the corresponding logic are manipulated in this way, as illustrated in Section 5.

Since we support just propositional Hilbert style proof calculi at the moment,
we have only implemented an interactive backward proof construction method
using a simple unification algorithm [20]. Consequently, the supported proof
strategy consists in attempting to unify each goal sentence with an axiom or the
conclusion of a proof rule, making any premises as new subgoals. The explicit
use of theory presentations and morphisms guides the derivation process and
captures any required switch in derivation context.

5 Automating Rigorous Software Development

In this section, we present the outline an automated proof of a characteristic
property of our simplified voting system, namely that, once an elector votes in
some candidate, no vote will ever be issued again by the same elector:

`Terminal voteA ∨ voteB→ XG(¬voteA ∧ ¬voteB) (3)

In order to carry out the proof, we use the metal tool, which at the present
moment integrates under a single textual user interface the whole functionality
of our toolkit. Since the development of a derivation using this tool requires
the selection of a proof calculus and a base-level theory, we adopt, using the
following commands, the calculus presented in Figure 6 of the propositional
fragment of the logic presented in [6] and a textual representation of Terminal
which resembles the specification in Figure 3:

metal 0.1: Welcome!

[MetaL]> gen "IFBTPL.mth"

Generated proof calculus corresponding to the given meta-theory.

[MetaL]> calc IFBTPL

Please wait while (re)loading.

metal 0.1: Welcome!

[IFBTPL]> theo Terminal

[IFBTPL,Terminal]> goal ((voteA || voteB) => X (G ((~voteA) && (~voteB))))

The derivation begins with the retrieval of some auxiliary temporal logical
lemmas (such as those presented below) that were previously proved at the meta-
logical level and are added for subsequent use to the meta-theory currently loaded
into the tool, as if they were part of the corresponding proof calculus:

[IFBTPL,Terminal] load "HS.thm"

Read {p => q, q => r} |- :: [HS] {p => r}.

[IFBTPL,Terminal] load "ORL.thm"

Read {p => r, q => r} |- :: [ORL] {(p || q) => r}.

[IFBTPL,Terminal] load "ANDR.thm"

Read {p => q, p => r} |- :: [ANDR] {p => (q && r)}.

[IFBTPL,Terminal] load "EXCGX.thm"

Read {} |- :: [EXCGX] {(X (G p)) <=> (G (X p))}

[IFBTPL,Terminal] load "DISTG&.thm"

Read {} |- :: [DISTG&] {(G (p && q)) <=> ((G p) && (G q))}.

[IFBTPL,Terminal] load "DISTX&.thm"

Read {} |- :: [DISTX&] {(X (p && q)) <=> ((X p) && (X q))}.

The lemmas above are used in an interactive process wherein the user selects
one of the possible unifications (matching the existing proof calculi rules, axioms
or lemmas with each goal) so as to advance in the derivation construction:

[IFBTPL,Terminal]> choices

1. ORL [p :: [MVAR] |-> voteA, q :: [MVAR] |-> voteB,

r :: [MVAR] |-> X (G ((~voteA) && (~voteB)))] [1]

2. HS [p :: [MVAR] |-> voteA || voteB,

r :: [MVAR] |-> X (G ((~voteA) && (~voteB)))] [1]

3. MP-IFBTPL [q :: [MVAR] |->

(voteA || voteB) => X (G ((~voteA) && (~voteB)))] [1]

[IFBTPL,Terminal]> stepw 1

[IFBTPL,Terminal]> status

current derivation:

1. voteA => X (G ((~voteA) && (~voteB)))

2. voteB => X (G ((~voteA) && (~voteB)))

3. (voteA || voteB) => X (G ((~voteA) && (~voteB)))

{ORL [p :: [MVAR] |-> voteA, q :: [MVAR] |-> voteB,

r :: [MVAR] |-> X (G ((~voteA) && (~voteB)))] [1,2]}

Note that formulae 1 and 2 above are logically equivalent up to symbol
renaming. This allows us to safely focus on the derivation of either of them, say 1,
and reuse its proof to justify the other derivation branch using an automorphism.

Also note that the application of ORL above consists in one of the simplest
cases of proof rule application, in that no (new) meta-variable is introduced in
the derivation. Using Hilbert style, however, it is not always possible to follow
a constructive process of this kind. In the application of HS below, for instance,
the introduced meta-variables have to be substituted afterwards:

[IFBTPL,Terminal]> choices +1

1. HS [p :: [MVAR] |-> voteA,

r :: [MVAR] |-> X (G ((~voteA) && (~voteB)))] [1]

[IFBTPL,Terminal]> stepw 1

[IFBTPL,Terminal]> status

current derivation:

1. voteA => _q1 :: [MVAR]

2. _q1 :: [MVAR] => X (G ((~voteA) && (~voteB)))

3. voteA => X (G ((~voteA) && (~voteB)))

{HS [p :: [MVAR] |-> voteA,

r :: [MVAR] |-> X (G ((~voteA) && (~voteB)))] [1,2]}

4. voteB => X (G ((~voteA) && (~voteB)))

5. (voteA || voteB) => X (G ((~voteA) && (~voteB)))

{ORL [p :: [MVAR] |-> voteA, q :: [MVAR] |-> voteB,

r :: [MVAR] |-> X (G ((~voteA) && (~voteB)))] [3,4]}

[IFBTPL,Terminal]> subst [_q1 :: [MVAR] |->

X (G (~voteA)) && X (G (~voteB))] [1,2]

[IFBTPL,Terminal]> status +2

1. voteA => (X (G (~ voteA))) && (X (G (~ voteB)))

2. ((X (G (~voteA))) && (X (G (~voteB)))) => X (G ((~voteA) && (~voteB)))

The last sentence labeled with 2 above is a direct consequence of DISTX&,
DISTG& and GV1 under rules GENG, MP and HS. In its turn, the last sentence
labeled with 1 above is obtained from an ANDR application:

[IFBTPL,Terminal]> choices +1

1. ANDR [p :: [MVAR] |-> voteA, q :: [MVAR] |-> X G (~voteA),

r :: [MVAR] |-> X (G (~voteB))] [1]

[IFBTPL,Terminal]> stepw 1

[IFBTPL,Terminal]> status +3

1. voteA => X (G (~voteA))

2. voteA => X (G (~voteB))

3. voteA => (X (G (~voteA))) && (X (G (~voteB)))

{ANDR [p :: [MVAR] |-> voteA, q :: [MVAR] |-> X G (~voteA),

r :: [MVAR] |-> X (G (~voteB))] [1,2]}

Goal 1 above can formulated entirely in the language of CTerminal, by
mapping vote into voteA using the CTAtoST ◦ STtoT morphism. If this were the
only goal of our derivation, it would be possible to prove it using this presentation
as a derivation context. In this way, the automated derivation could proceed by
issuing the following commands, which would switch the derivation context to
CTerminal using the respective morphisms and presentations:

[IFBTPL,Terminal] retracw STtoT STerminal

[IFBTPL,STerminal] retracw CTAtoST CTerminal

The proof of voteA => X (G (~voteA)) can be outlined by first arguing that
vote can only happen if a choice has already been confirmed (1.13) and, in this
circumstance, another vote cannot be issued in the next moment (1.14). More-
over, in view of (1.9) and (1.11), the logical value of this attribute never changes
again. Therefore, after the moment when confirmed becomes true, vote is for-
bidden to happen forever. These two axioms also entail voteA => X (G (~voteB))

in the Terminal context. The derivation of these facts is omitted here.
The supported forward proof checking process is analogous to the above, but

having as a goal to validate or find in an automatic manner the set of unifiers
for each derivation step.

6 Related Work

Our work is related at least to two distinct research subjects: the development
of automated reasoning tools and the development of integrated environments
for rigorous software development.

An example of the first family of tools is the Alfa proof editor [12], which sup-
ports direct manipulation of derivations in a logical framework based on Martin-
Löf’s Type Theory. The tool is interactive and allows one to define meta-theories
(axioms and inference rules), formulate theorems and construct derivations. Alfa
uses the Agda proof checker and both are implemented using Haskell.

Another example of automated reasoning tool is Isabelle [21], which is a
generic theorem prover strongly influenced by the design of LCF and conse-
quently based on the functional programming language ML. A LCF theory is
presented in terms of types and functional symbols of some signature. Moreover,
LCF adopts the proofs as types paradigm and represents object level proof rules

by functions. Proof tactics are represented as terms that are provided as input
to an interactive proof engine. Isabelle has been used to automate a considerable
number of proof calculi.

Despite the fact that Isabelle was developed to be a generic theorem prover,
there is substantial evidence that it is also an adequate tool for supporting
rigorous software development. Many formal methods, such as VDM [1] and
Z [15], have been automated using this tool. The development of concurrent
and distributed systems has also been studied using Isabelle, as show in the
mechanisation of UNITY [22] and TLA [17].

The main distinction between these tools and the toolkit described here is the
role attributed to signatures and theory presentations. These tools both support
signature and presentation definition, but do not treat them explicitly as first
class objects in the reasoning process. In turn, our work has been influenced by
the axiomatic and the ADT schools of software development, which focus on
logical presentation independently from any implementation platform [13]. The
categorical treatment of these and related notions is particular to our work.

The use of categorical notions allows us to give a more systematic treatment
to presentation operations such as extension and merging, by using constructions
like inclusion morphisms and co-limits. We also foresee an improved integration
with so called oracles, which are external tools that may be used for supporting
additional automated reasoning functionalities, since the implemented general
logical structures already define the interfaces for supporting this kind of inte-
gration. We formalise the integration itself through some consequence relation,
which can be defined semantically or proof-theoretically.

Substantial research on providing automated reasoning support for rigorous
software development has also been performed using Maude [3], which is based
on rewriting logic as a general logical framework. An inductive theorem prover
[2] and a model checker for linear time logic [7] are among the available tools.

Some attempts have been made to provide support for rigorous software
development approaches based on category theory using IDEs. Among these,
KIDS [24] and more recently SPECWARE [25] appear to consist in the most
elaborated tools. Both support a transformational process which begins with the
formulation of a set of specifications and morphisms to represent the application
domain using a specific higher order logical system and proceeds by categorical
stepwise refinement. This process targets the generation of code based on variants
of Lisp. The correctness of the process is justified in terms of the source and
the programming logical systems. We believe that future versions of our toolkit
could benefit from the reported results on categorical design tactics, data type
refinement and program optimization implemented by these environments.

Finally, concerning the manipulation of categorical notions using software
tools, [23] presents a full implementation of these notions using the program-
ming language ML, which is not lazy and consequently does not provide faithful
support to infinitary data objects. Isabelle was adopted in [19] instead, but the
considerable distinction between the produced automated proofs and those de-
veloped manually was stressed. This has been a major concern in our research.

7 Final Remarks

In this paper, we have presented a toolkit devoted to support rigorous software
development activities based on Category Theory and General Logics.

Currently, apart from providing an implementation of the underlying foun-
dational definitions aiming to support toolkit extensibility, the following func-
tionalities for propositional logics presented in Hilbert style are supported:

1. Theory presentation type inference;
2. Categorical theory presentation manipulation;
3. Proof checking;
4. Interactive theorem proving;
5. Persistence and pretty-printing;

The decision of beginning the development of the toolkit with a focus on propo-
sitional logics was due to their simpler structure, facilitating the implementation
of the notions described here. The choice of Hilbert style proof calculi was due
to the fact that almost all logics can (also) be defined in this way. All the propo-
sitional proof calculi listed in [4] have been implemented using this toolkit.

These decisions do not constrain the future development of our toolkit. In
particular, we are currently developing the implementation of a higher order
resolution algorithm that will support theorem proving in first and higher order
logics. In addition, we do not foresee any difficulty in providing support for
natural deduction and sequent calculi for logics whose derivations are presented
in this way. Yet another goal is to formalize the meta-level of our toolkit.

The real challenge ahead is concerning how to provide systematic and for-
malised support for model theory. This subject has been much less explored in
the literature and requires substantially more research. Another research direc-
tion is providing support for derivable proof rules, as adopted in rely-guarantee
disciplines of software development [5], which require specific derivation styles.

References

1. Sten Agerholm and Jacob Frost. An Isabelle-based theorem prover for VDM-SL.
In E. Gunter and A. Felty, editors, Proceedings of the 10th Conference on Theorem
Proving in Higher Order Logics (TPHOLs’97), volume 1275 of Lecture Notes in
Computer Science, pages 1–16. Springer-Verlag, August 1997.

2. Manuel Clavel, Francisco Durán, Steven Eker, and José Meseguer. Building equa-
tional proving tools by reflection. In CAFE: An Industrial-Strength Algebraic For-
mal Method. Elsevier, 2000.

3. Manuel Clavel et al. Maude: Specification and programming in rewriting logic.
Theoretical Computer Science, 285:187–243, 2002.

4. Carlos Henrique C. Duarte. Proof-Theoretic Foundations for the Design of Exten-
sible Software Systems. PhD thesis, Department of Computing, Imperial College,
London, UK, 1998.

5. Carlos Henrique C. Duarte and Tom Maibaum. A rely-guarantee discipline for
open distributed systems design. Information Processing Letters, 74(1–2):55–63,
April 2000.

6. Carlos Henrique C. Duarte and Tom Maibaum. A branching-time logical system for
open distributed systems development. Electronic Notes on Theoretical Computer
Science, 67, 2002.

7. Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The Maude LTL
model checker. Electronic Notes in Theoretical Computer Science, 71:143–168,
2002.

8. José Fiadeiro and Amilcar Sernadas. Structuring theories on consequence. In
Donald Sannella and Andrzej Tarlecki, editors, Recent Trends in Data Type Speci-
fication, volume 332 of Lecture Notes in Computer Science, pages 44–72. Springer-
Verlag, 1988.

9. Joseph A. Goguen. A categorical manifesto. Mathematical Structures in Computer
Science, 1(1):49–67, 1991.

10. Joseph A. Goguen and Rod M. Burstall. Institutions: Abstract model theory for
specification and programming. Journal of the ACM, 39(1):95–146, January 1992.

11. Armando Haeberer and Tom Maibaum. The very idea of software development
environments: A conceptual architecture for the ARTS environment paradigm. In
Proc. 13th Conference on Automated Software Engineering (ASE’98), pages 260–
271. IEEE Computer Society Press, October 1998.

12. Thomas Hallgren and Aarne Ranta. An extensible proof text editor. In M. Parigot
and A. Voronkov, editors, Logic for Programming and Automated Reasoning
(LPAR’2000), number 1955 in Lecture Notes in Computer Science, pages 70–84.
Springer Verlag, November 2000.

13. Robert Harper, Donald Sannella, and Andrzej Tarlecki. Structured presentations
and logic representations. Annals of Pure and Applied Logic, 67:113–160, 1994.

14. Simon Peyton Jones, editor. Haskell 98 Language and Libraries – The Revised
Report. Cambridge University Press, 2003.

15. Kolyang, Thomas Santen, and Burkhart Wolff. A structure preserving encoding of
Z in Isabelle/HOL. In J. von Wright, J. Grundy, and J. Harrison, editors, Proc. 9th
Conference on Theorem Proving in Higher Order Logics, volume 1125 of Lecture
Notes in Computer Science, pages 283–298. Springer Verlag, 1996.

16. Tom Maibaum and Wladyslaw Turski. On what exactly is going on when soft-
ware is developed step-by-step. In Proc. 7th Conference on Software Engineering
(ICSE’84), pages 525–533. IEEE Computer Society Press, March 1984.

17. Sthepan Merz. Mechanizing TLA in Isabelle. Technical report, University of
Maribor, Slovenia, 1995.

18. José Meseguer. General logics. In Hans Dieter Ebbinghaus et al., editors, Logic
Colloquium 87, pages 275–329. North Holland, 1989.

19. Greg O’Keefe. Towards a readable formalisation of category theory. Electronic
Notes in Theoretical Computer, 91:212–228, 2004.

20. Lawrence C. Paulson. Designing a theorem prover. In S. Abramsky, D. M. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, pages 415–
475. Oxford University Press, 1992.

21. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture
Notes in Computer Science. Springer-Verlag, 1994.

22. Lawrence C. Paulson. Mechanizing a theory of program composition of UNITY.
ACM Transactions on Programming Languages and Systems, 23(6):1–30, Novem-
ber 2001.

23. David E. Rydeheard and Rod M. Burstall. Computational Category Theory.
Prentice-Hall, 1988.

24. Douglas R. Smith. KIDS: A semi-automatic program development system. IEEE
Transactions on Software Engineering, 16(9):1024–1043, 1990.

25. Yellamraju V. Srinivas and Richard Jüllig. SPECWARETM : Formal support for
composing software. In B. Moller, editor, Proc. Mathematics of Program Construc-
tion (MPC’95), volume 947 of Lecture Notes in Computer Science, pages 399–422,
1995.

({ :: IFBTPLFormula [SORT],
~ :: IFBTPLFormula -> IFBTPLFormula [CONN],
=> :: (IFBTPLFormula, IFBTPLFormula) -> IFBTPLFormula [CONN],
|| :: (IFBTPLFormula, IFBTPLFormula) -> IFBTPLFormula [CONN],
&& :: (IFBTPLFormula, IFBTPLFormula) -> IFBTPLFormula [CONN],
<=> :: (IFBTPLFormula, IFBTPLFormula) -> IFBTPLFormula [CONN],

Beg :: () -> IFBTPLFormula [CONN],
V :: (IFBTPLFormula, IFBTPLFormula) -> IFBTPLFormula [CONN],
X :: IFBTPLFormula -> IFBTPLFormula [CONN],
F :: IFBTPLFormula -> IFBTPLFormula [CONN],
G :: IFBTPLFormula -> IFBTPLFormula [CONN],
U :: (IFBTPLFormula, IFBTPLFormula) -> IFBTPLFormula [CONN],
W :: (IFBTPLFormula, IFBTPLFormula) -> IFBTPLFormula [CONN],

A :: IFBTPLFormula -> IFBTPLFormula [CONN],
E :: IFBTPLFormula -> IFBTPLFormula [CONN]},

{{} |- :: [ORDEF-IFBTPL] {(p || q) <=> ((~p) => q)},
{} |- :: [ANDDEF-IFBTPL] {(p && q) <=> ~(p => ~q)},
{} |- :: [IFFDEF1-IFBTPL] {(p <=> q) => (p => q)},
{} |- :: [IFFDEF2-IFBTPL] {(p <=> q) => (q => p)},

{} |- :: [WEAK-IFBTPL] {p => (q => p)},
{} |- :: [DIST-IFTLPL] {(p => (q => r)) => ((p => q) => (p => r))},
{} |- :: [CONT-IFBTPL] {((~p) => ~q) => (q => p)},

{p, p => q} |- :: [MP-IFBTPL] {q},

{} |- :: [XDEF-IFBTPL] {(X p) <=> (p) V (~ (p => p))},
{} |- :: [FDEF-IFBTPL] {(F p) <=> (p || (p V (p => p)))},
{} |- :: [GDEF-IFBTPL] {(G p) <=> ~(F (~p))},
{} |- :: [UDEF-IFBTPL] {(p U q) <=> (q || (p && (q V p)))},
{} |- :: [WDEF-IFBTPL] {(p W q) <=> ((G p) || (p U q))},

{} |- :: [GV1-IFBTPL] {(G (p => q)) => ((p V r) => (q V r))},
{} |- :: [GV2-IFBTPL] {(G (p => q)) => ((r V p) => (r V q))},
{} |- :: [VVR-IFBTPL] {(p V q) => (p V (q && (p V q)))},
{} |- :: [VVL-IFBTPL] {((p && (q V p)) V p) => (q V p)},
{} |- :: [LIN-IFBTPL] {((p V q) && (r V s)) =>

(((p && r) V (q && s)) ||
((p && s) V (q && s)) ||
((q && r) V (q && s)))},

{} |- :: [DISTV-IFBTPL] {((p || q) V r) => ((p V r) || (q V r))},
{} |- :: [INFT-IFBTPL] {X (p => p)},
{} |- :: [INIT-IFBTPL] {~ (X Beg)},

{p} |- :: [GENG-IFBTPL] {G p},
{Beg => G p} |- :: [INDG-IFBTPL] {p},

{} |- :: [EDEF-IFBTPL] {(E p) <=> ~(A (~p))},

{} |- :: [AMON-IFBTPL] {(A (p => q)) => ((A p) => (A q))},
{} |- :: [AREF-IFBTPL] {(A p) => p},
{} |- :: [AS5-IFBTPL] {(E p) => A (E p)},
{} |- :: [EV-IFBTPL] {((E p) V q) => E (p V q)},
{} |- :: [AFIX-IFBTPL] {(A (p => (X (q U p)))) => (p => X (A (q U p)))},
{} |- :: [EBEG-IFBTPL] {(E Beg) => Beg},

{p} |- :: [GENA-IFBTPL] {A p}})

Fig. 6. Proof Calculus Presentation for an Initialised Future Time Propositional Logic.

