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Abstract. In this paper, we propose a new method, based on the use of temporal logic,
for developing and reasoning about functional programs. Our software development
method is rigorous and systematic: starting with a list of informal requirement de-
scriptions, we initially derive a set of object-based specifications, which are later on
transformed into modular monadic functional programs. The obtained specifications
and programs are shown to consist in an effective basis for verification.
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1 Introduction

For years, formal methods have been regarded as a promise for bridging the gap between soft-
ware development processes and those adopted in engineering physical artifacts. Essentially,
what is expected from the use of formal approaches is the development of reliable software
artifacts through controlled and organised processes, using techniques and tools similar to
those adopted in other engineering fields (e.g. the integral calculus and numerical approxi-
mation techniques used in the structural design of buildings within Civil Engineering).

Many formal methods and techniques exist today, each of which designed for treating
specific domains. For instance, VDM [13] is a method based on a three-valued logic, which
is particularly well-suited to specifying the pre and post-conditions of statements in sequential
programs. Temporal logics, on the other hand, are appropriate for specifying and reasoning
about reactive systems [16, 1].

So far, the adoption of formal development approaches has not obtained widespread ac-
ceptance, remaining as a research subject which is normally recalled only in specific practical
situations. Some authors even suggest that software development is an informal activity by
nature. In order to appempt to reconcile these viewpoints, the integration of formal and in-
formal approaches has been proposed (e.g. [2]). The necessity of either justifying in rigorous
terms the transition from application requirements to program code [3] or verifying a devel-
opment once an executable program is obtained from specifications [11] also seem to count
against the use of formal methods. These obligations, however, can be treated with formal
software development environments. The consensus seems to be that it is not easy to define
an effective formal software development process.
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Figure 1: Specification of the academic system: (a) class diagram and (b) context diagram.

In this paper, as an exercise we develop the design, refinement, implementation and ver-
ification of a toy academic system. Our purpose here is to illustrate that, right now, we can
propose the integrated application of a set of techniques and tools so as to define a new formal
development method. This method, on the one hand, does not seem to be too distant from the
current practises, but, on the other, enables the effective use of formal methods in software
development activities.

Specifically, we describe in Section II the application requirements of our system. In
Section III, we derive a set of UML diagrams [15], a set of temporal logic specifications [16],
and, finally, an executable program written in the monadic functional language Haskell [12].
Next, in Section IV, we outline the formal verification of some properties of the described
system. We conclude the paper with some comments on related and future research.

2 A Toy Example

Our problem consists in providing automated support for the academic activities of a uni-
versity registrar. The system to be developed should provide support for the aspects of this
problem related to students and their enrolment in specific courses. The following require-
ments are assumed to have been elicited after interviewing the actors in the problem domain:

• It should be possible to record, modify and erase students, courses and course enrolments;

• The attributes of interest regarding students are their personal id (key) and name;

• The attributes of interest regarding courses are the respective discipline code (key); initial
and final date; the day of week, time and room of all classes;

• Concerning each enrolment relating a student to a course, it is necessary to record whether
or not the student is approved in the course, with the respective final grade if appropriate.

As a constraint, a student is never allowed to enrol simultaneously in any pair of courses
which have classes with conflicting date and time.
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3 From Requirements to Specifications and Programs

3.1 Informal Design

The initial specification of our system is the class diagram presented in Figure 1 (a). That
static structural model considers the existence of two object classes (with their respective
attributes), Student and Course, and an association class, Enrols, to represent the many-to-
many relationship between students and courses.

As we have already mentioned, our purpose here is to guide the development process to-
wards the derivation of a program entirely written in a purely functional language. It is well
known that purelly functional programs can only deal with state in an implicit way, consid-
ering state components as part of the environment which the program manipulates in a func-
tional way [20]. Consequently, we are led to study the aforementioned classes within their
utilisation context, which is depicted in Figure 1 (b). That implementation biased diagram is
analogous to the context diagrams found in essential system analysis methods [14].

The diagram in Figure 1 (b) specifies our system as the Main class, an aggregation of three
storage classes – dealing with students, courses and enrolments – which are manipulated as a
single execution environment by method main. Storage classes themselves are aggregations
that possess inclusion, modification and exclusion methods. With this organisation, the basic
objects of our system are to be static, whereas those dealing with the environment will have
dynamic behaviour. This guideline should be followed in the development of any information
system.

3.2 Formal Design

Now, we transform each class specification into a theory presentation. We choose to define
presentations here using the first-order temporal logical system described in [8], since the
manipulated static objects may have arbitrary complex structure and the described system
may present reactive behaviour. Each specification describing static objects gives rise to a
new sort symbol, representing the population of objects of the corresponding type, and a
construction function, which takes as arguments values of the respective attribute types and
produces an object of the new type. Attribute names are translated into two different kinds of
functional symbols: if the attribute is part of the object primary key, then it is mapped into a
rigid symbol, which never suffers a value change, or else it is mapped into a flexible symbol,
which may face value changes as time passes. Classes without an apparent primary key are
refined into a new structure with an additional attribute to hold a generated unique id. Many
of the properties stated in each presentation are derived from the requirements specification,
but some already reflect the required information system operations to solve our problem.

In Figure 2, we present the vocabulary of symbols and the axioms derived from the stu-
dent class. Students are constructed using the rigid function STUDENT , have their identity
retrieved using the rigid function idStudent and their currently adopted name recovered by
the flexible function nameStudent. Two properties are specified: that two students with the
same id are actually the same person (1.1), reflecting the fact that id is the primary key of
Student, and that the identity of a constructed student is that mentioned in the construction
function first argument (1.2), a closure property.

The derivation of theory presentations for basic object classes is relatively simple. On the
other hand, the derivation of properties of storage classes is where the complexity lies, be-
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Presentation STUDENT

imports INTEGER, STRING

sorts Student
rigid STUDENT :: Integer→ String→ Student, idStudent :: Student→ Integer
flexible nameStudent :: Student→ String
axioms r, s :: Student, i :: Integer, n :: String
idStudent r = idStudent s→ r = s (1.1)
idStudent(STUDENT i n) = i (1.2)

End

Figure 2: Specification of students.

cause we are obliged to treat their behaviour over time. In Figure 3, for instance, we show the
presentation corresponding to the student storage class. All the symbols defined in the pre-
sentation are flexible, reflecting their time dependant meaning. StudentDB is a predicative
symbol that takes a student as an argument and holds for this value as long as it is considered
to be one of the stored objects. The other three symbols reflect the operations that may be
performed. Note in axiom (2.1) that we are required to treat the flexible symbols of the basic
class in the storage class specification: the axiom states that, if a student has some given name
and identity, then these attribute values must yield the same student if used for construction,
but observe that the converse is not the case because a student may adopt different names at
different times. Axioms (2.2), (2.5) and (2.7) specify enabledness properties stating respec-
tively that a student can only be recorded if this is not currently the case, or if the opposite is
true for modification and exclusion. Axiom (2.3), similarly to axiom (2.8), specifies a causal-
ity property saying that a student is stored immediately after an inclusion and continues in this
situation until excluded from the class. Axioms (2.4) and (2.6) specify the effect caused by a
student inclusion or modification over student names. Finally, axiom (2.9) states a so-called
locality property [9], that student names only change if an inclusion or modification happens.

The derivation of theory presentations corresponding to associations and association classes
is a story on its own. The specification has to be successively transformed using the following
process, which is very similar to that adopted in the logical design of database systems [6]:

• Each generalisation (or specialisation) hierarchy is treated as a one-to-many association;

• Each many-to-many relationship (association class or not) is treated as a class with a pair
of one-to-many associations having as the many side that of the originally related classes;

• Associations of one-to-many kind imply in the inclusion of new attributes at the many
side of the relation, representing the primary key of an object at the other side of the
relationship;

After a class is derived using these rules, it is treated as any basic class. The presentation
derived from Enrols is exhibited in Figure 5. Note that, because the primary key of Enrols is
composed, the functional dependence of this object type in relation to both key components
has to be captured as a conjunction (3.1).
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Presentation STUDENTDB
imports STUDENT

flexible StudentDB(Student),
incStudentDB(Student),modStudentDB(Student), excStudentDB(Student)

axioms s :: Student, i :: Integer, n :: String
nameStudent s = n ∧ idStudent s = i→ s = STUDENT i n (2.1)
incStudentDB(s)→ /∃r · StudentDB(r) ∧ idStudent s = idStudent r (2.2)
incStudentDB(s)→ X((StudentDB(s))W(excStudentDB(s))) (2.3)
incStudentDB(s) ∧ (s = STUDENT i n)→ X(nameStudent s = n) (2.4)
modStudentDB(s)→ ∃r · StudentDB(r) ∧ idStudent s = idStudent r (2.5)
modStudentDB(s) ∧ (s = STUDENT i n)→ X(nameStudent s = n) (2.6)
excStudentDB(s)→ StudentDB(s) (2.7)
excStudentDB(s)→ X((¬StudentDB(s))W(incStudentDB(s))) (2.8)
incStudentDB(s) ∨modStudentDB(s)∨
(nameStudent s = n→ X(nameStudent s = n))

(2.9)

End

Figure 3: Specification of the student storage class.

The derived presentation for the enrolment storage class possesses interesting characteris-
tics. Inclusion can only happen if the respective student and course are recorded (4.1). Exclu-
sion is only allowed if the relationship exists and the corresponding student has not received
his final grade in the course (4.3), this last property implied by the problem requirements.
Another relevant point to mention concerning this presentation is that it not only depends on
the presentations of student and course storage classes, as discussed above, but it also reg-
ulates the occurrence of the operations defined therein: axioms (4.5) and (4.6) state that a
student or course exclusion can only happen if the respective object does not participate in
any relationship. This recalls us that the derived set of presentations can be seen together as
yet another application of the categorical techniques described in [9].

3.3 Implementation Sketch

An implementation for the system in question, written in the monadic functional language
Haskell, is obtained following the steps described below:

• Each derived theory presentation gives rise to the definition of a new abstract data type
(inside a module), implemented in terms of algebraic and/or pre-defined basic types
(defined with data or type);

• Each functional symbol becomes a field label of the respective algebraic type (defined
between curly braces after data);

• Each predicative symbol denoting a data storage is implemented as a list of basic objects
(defined using square braces after type);

• main is implemented as an interactive function, allowing the user to select a supported
operation and subsequently inform any required data to perform the chosen method;
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-- Student.hs
module Student (Student, STUDENT, idStudent, nameStudent) where

data Student = STUDENT {idStudent::Integer, nameStudent::String}

-- StudentDB.hs
module StudentDB (StudentDB, incStudentDB, excStudentDB, modStudentDB) where

import Student

type StudentDB = [Student]

selStudentDB :: StudentDB -> Integer -> [Student]
selStudentDB [] i = []
selStudentDB (h:t) i = if (idStudent h == i) then

h:(selStudentDB t i)
else

selStudentDB t i

incStudentDB::StudentDB -> Student -> StudentDB
incStudentDB l s = (s:l)

excStudentDB::StudentDB -> Student -> StudentDB
excStudentDB [] s = []
excStudentDB (h:t) s = if (idStudent s == idStudent h) then (excStudentDB t s) else

(h:excStudentDB t s)

modStudentDB::StudentDB -> Student -> StudentDB
modStudentDB [] s = []
modStudentDB (h:t) s = if (idStudent s == idStudent h) then (s:t) else

(h:modStudentDB t s)

Figure 4: Sketch of the implementation.

• Inclusion, modification and exclusion methods are implemented as functions with the
type of the respective focus object inlined as the first formal parameter and also as the
function result.

Following these steps, the implementation of Student and StudentDB are presented in
Figure 4. It is important to say that some specified properties are not explicitly handled in
this implementation process since they are ensured by the programming language semantics.
For instance, this is the case for locality and closure properties. Enabledness and causality
properties, on the other hand, are used in the derivation of the pre and post-conditions of
execution of each storage class method, which appear in the derived main program.

4 From Specifications and Programs to Correctness

At this point, in order to attest the correctness of the derived program, which is guaranteed
by the outlined method, we need to adopt a distinct (non-temporal) programming logic. It
is also possible to continue using the same logical system and conservatively extend our
specifications to capture the relevant properties of the derived implementation, in order to
verify some other properties.

Following the second path, some new axioms are introduced in the specifications due to
the chosen target programming language and its semantics. This is the case, for instance, re-
garding sequentially: in standard Haskell, since only one expression can be reduced at each
time, we are ensured that always at most one object method is in execution. Note that this is
enforced only at the implementation level: the concurrent occurrence of modification and ex-
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Presentation ENROLS

imports INTEGER, STRING, BOOL, FLOAT

sorts Enrols
rigid ENROLS :: Integer→ String→ Bool→ Bool→ Float→ Enrols,

idEnrols :: Enrols→ Integer, codeEnrols :: Enrols→ String

flexible approvalEnrols :: Enrols→ Bool,
existsGradeEnrols :: Enrols→ Bool, gradeEnrols :: Enrols→ Float

axioms x, y :: Enrols, a, e :: Bool, i :: Integer, c :: String, f :: Float
idEnrols x = idEnrols y ∧ codeEnrols x = codeEnrols y → x = y (3.1)
idEnrols(ENROLS i c a e f) = i (3.2)
codeEnrols(ENROLS i c a e f) = c (3.3)

End

Figure 5: Specification of enrolments.

clusion operations would be admissible by our specifications, without any unexpected effect
given that the observable result of the modification would be cancelled by the exclusion. An-
other example is that of causality properties, which only specify what would happen in spe-
cific situations but would not constrain these occurrences to happen only when caused. This
shows that a completion process is necessary to capture all the implementation properties.
The completed presentation is the appropriate artifact to provide as an input for automated
software development environments comprising model checkers, for instance.

Following the first path above, we can perform the verification of some properties relying
on the equational definitions of the pre-defined Haskell data types. For example, consider the
implementation of the following interactive method, which appears in the Main module:

modStudent :: StudentDB -> IO (StudentDB)
modStudent d = do i <- getId

n <- getName
let r = selStudentDB d i
in return (if r == [] then

d
else

let s = STUDENT i n
in modStudentDB d s)

At execution time, the function argument is always an alias of a manipulated state component
and the function result definitely represents the new value of this part of the environment after
the function execution terminates. This termination property is guaranteed by the absence of
iteration or recursion. Moreover, this implementation preserves the validity of (2.5) and (2.6).

Assume that the execution of modStudent is atomic. To verify (2.5), just note that the
student database will never be modified if the student id is not in this storage. To verify (2.6),
it is sufficient to ensure by structural induction that a student name will have been modified
after the execution of modStudentDB. Therefore, both properties are guaranteed by our im-
plementation. This kind of verification process can be better supported by interactive theorem
provers.
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Presentation ENROLSDB
imports ENROLS, STUDENTDB, COURSEDB
flexible EnrolsD(Enrols),

incEnrolsDB(Enrols),modEnrolsDB(Enrols), excEnrolsDB(Enrols)

axioms x, y :: Enrols, n, wd :: String, d1, d2 :: Date, t :: Time, o :: Int
. . .

incEnrolsDB(x)→ ∃n · StudentDB(STUDENT (idEnrols x) n) ∧
∃d1, d2, wd, t, o · CourseDB(COURSE(codeEnrols x) d1 d2 wd t o) ∧
∃y · EnrolsDB(y) ∧ idEnrols x = idEnrols y ∧ codeEnrols x = codeEnrols y

(4.1)

incEnrolsDB(x)→ X((EnrolsDB(x))W(excEnrolsDB(x))) (4.2)
. . .

excEnrolsDB(x)→ EnrolsDB(x) ∧ ¬(existsGradeEnrols x = TRUE) (4.3)
excEnrolsDB(x)→ X((¬EnrolsDB(x))W(incEnrolsDB(x))) (4.4)

. . .
excStudent(s)→ /∃x · EnrolsDB(x) ∧ idStudent s = idEnrols x (4.5)
excCourse(c)→ /∃x · EnrolsDB(x) ∧ codeCourse c = codeEnrols x (4.6)

End

Figure 6: Specification of the enrolment storage class.

5 Concluding Remarks

In this paper, we have sketched the application of a method that not only relies on the use
of temporal logic but also integrates formal and informal techniques aiming to develop func-
tional programs. Based on a list of requirements, we initially construct a collection of UML
diagrams, then systematically derive a set of temporal specifications, and finally implement
them as a functional program. We believe that this is a relevant contribution since the outlined
development method keeps many similarities with the current practises while taking advan-
tage of the adopted formal techniques. This method was validated in the development of a
complete academic system comprising 8 classes and 3200 lines of derived Haskell code.

Some other authors have defended similar ideas in the literature. Bekaert proposes the
transformation of object-oriented specifications into logical theories [4]. Bose suggests the
application of model checking in translating UML specifications into code [5]. Russel created
new development techniques aiming at functional language implementations [17]. Thomsom
[19], Shroeder and Mossakowski [18] have developed programming logics for functional lan-
guages. We are not aware of any proposal treating the whole software development process.

The described work highlights the relevance of associating a (temporal) specification
logic to declarative languages, an idea initially proposed in [10]. One promising direction
for future work is to attempt to generalise our method, first to other declarative paradigms
and later to imperative languages. An orthogonal direction for future research is to inves-
tigate if the ideas discussed here can be transported to the development of concurrent and
distributed systems. We foresee that, in order to deal with the open nature of these systems, a
rely-guaranteed reasoning discipline will be required, as studied in [7].
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