
H. Bowman and J. Derrick (eds), Proc. 2nd IFIP Int. Conf. on Formal Methods for Open Object-Based Distributed Systems, 1997.

A proof-theoretic approach to the

design of object-based mobility

Carlos H. C. Duarte

Department of Computing, Imperial College

180 Queen's Gate, London, SW7 2BZ, United Kingdom

e-mail: cd7@doc.ic.ac.uk, tel: +44 171 594 8341, fax: +44 171 581 8024

Abstract. With the advent of technologies to realise parallel computing in mobile sometimes

portable platforms, it is now possible to ful�l requirements related to the very dynamic and

mutable user location. Designing the required applications calls for improved formal methods

to treat mobility while assuring correctness. In this paper, we argue that mobile systems can be

speci�ed and veri�ed in an e�ective modular manner using a logic which allows us to deal with

object creation and recon�guration. Capitalising on our previous work on the speci�cation and

veri�cation of actor systems using a temporal logic of objects, here we show that our approach

can be used to formally design location dependent applications.

Keywords: Actors, Speci�cation, Veri�cation, Mobile Systems, Location Management.

1 INTRODUCTION

We are currently facing a radical change in the way users interact with software sys-

tems and in the underlying distributed software architectures. Thanks to the advent

of technologies like cellular phones, personal digital assistants and active badges, users

are no longer required to go to speci�c access points to take advantage of some locally

provided functionality. Such devices have become increasingly more personal and can

be carried by their owners. In turn, software systems may now be used at any time

and place, and can provide location dependent functionality such as ubiquitous message

delivery, transportable user sessions and others [8]. What is essentially novel in this new

operational environment is the very presence of mobility. The way to support the new

requirements mobility poses is the management of location information.

The need to manage both location information and mobility brings with it new prob-

lems to be addressed in the design of parallel/distributed systems. For example, it is

now important to develop quantitative models to predict network performance according

to user mobility [10]. We are particularly concerned here with the more fundamental

question on how to develop such systems so as to correctly provide the required function-

ality. As complexity substantially grows with the autonomy and heterogeneity presented

by mobile devices and mobile applications become more and more open | character-

istics that must be accounted for in some design step | introducing errors during the

development process turns out to be easier and costly. The only way to assure software

correctness is the development of a formal, qualitative model of the system, to be re�ned

in a step-by-step process until an implementation is produced. As a result, it is possible

to clarify any matter of concern through proof or refutation.

Unfortunately, most of the existing formal methods are not so good in designing

mobile applications. Well established methods like VDM [9] and Z [17] do not address

at all the inherent concurrency of mobile systems. In some other cases, concurrency is

actually treated but the design process is organized in terms of notions like processes [13]

or programs [3, 20], which certainly provide important insights on how an implementation

should work but poorly support understanding and representing the problem domain in

an organised manner. On the other hand, the use of object-based notions like attributes,

actions and encapsulation as in [7] seems to bridge this gap. Even then, expressibility

concerns arise since the basic notion of mobility has to be captured.

We have developed a logic to support the design of actor systems [4]. Actors are com-

putational objects with encapsulated state which openly interact through asynchronous

point-to-point message passing [1]. As a result of processing messages, new concur-

rent actors can be created and actor names can be communicated, supporting in this

way dynamic recon�guration of actor communities. Our logic uses temporal theories

as object descriptions and theory morphisms as speci�cation connectors particularising

[7], although it presents an additional mode of interaction between objects to capture

reliable asynchrony. These characteristics make it possible to produce speci�cations in

isolation to be subsequently combined as well as to decompose proofs of global properties

in lemmas about single objects to be veri�ed in a localised manner. We claim here that

these characteristics are su�cient to guarantee an e�ective and modular formal design

of object-based mobile systems. We are not aware of any similar work in the literature.

In order to support our claim, we have chosen to study here the design of a location

management architecture for networks of mobile users and devices. For simplicity, we

ignore the important issues of dependability, authenticity and security [18] and concen-

trate just in the management of location information. In the next section, we introduce

our actor-based design approach. Subsequently, we informally describe the requirements

of location management applications and devote two sections to their design, namely to

their speci�cation and veri�cation. We conclude the paper providing a brief evaluation

of our achievements and suggesting further research.

2 A PROOF-THEORETIC APPROACH TO ACTOR DESIGN

We adopt full many-sorted �rst-order branching time logic with equality as the un-

derlying foundation of our work. A good survey on the subject appears in [5]. Theory

signatures and presentations are used to de�ne respectively the language and description

of object behaviours and to produce modularised designs. We identify therein the basic

object-based notions of attribute, action and encapsulation, and connect these entities

using signature and theory morphisms as proposed in [7]. The actor-based formalism is

obtained as a particularization of this generic framework. In [4] we provide the rationale

leading us to propose the formalism as such and the description of its proof-theory. Here

we only present the relevant notions to mobile systems design.

Before introducing technical de�nitions, let us present in Figure 1 the speci�cation of

region tree nodes, instances of the spatial hierarchical data structures described in [16].

Actor RegionTreeNode

data types addr; direc; int; bool (T; F : bool; 0; 1; 3 : int; + : int� int! int)

attributes me; to : addr; reg[direc] : addr; void : bool; ans : int

actions cnt(addr; addr) : local birth;

node(addr; addr) : local+ extrn birth;

inc; updt(addr; addr; addr; addr) : local computation;

ack(addr; addr; addr; addr) : extrn message;

split(addr); in(addr; addr); rep(addr; addr; bool) : local+ extrn message

axioms k; n; p; q; r; s; t; u; x; y; z : addr; d : direc; v : int; b : bool

node(n; p) _ cnt(n; p)! me = n ^ to = p ^ void = T ^ 8d � reg[d] = n ^ ans = 0 (1.2)

updt(~n) ^me = p ^ to = q ^ ans = v ! X(me = p ^ to = q ^ ans = v ^ void = F ^ ~reg = ~n) (1.3)

inc ^me = n ^ to = p ^ ~reg = ~q ^ ans = v ! X(me = n ^ to = p ^ ~reg = ~q ^ ans = v + 1) (1.4)

split(n) ^me = p! X(9~q � new(node; q

i

; q

i

; p) ^ updt(~q) ^ send(ack; n; ~q)) (1.5)

(in(n; p) ^ r = n _ rep(r; s;T) ^ to = p) ^me = n! X(send(rep; p; r; n;T)) (1.6)

in(n; p) ^me = q ^ q 6= n ^ void = F ^ ~reg = ~r ! X(9! s � new(cnt; s; q; p) ^ send(in; r

i

; n; s)) (1.7)

in(n; p) ^me = q ^ q 6= n ^ void = T! X(send(rep; p; n; q; F)) (1.8)

rep(n; p; F) ^ to = r ^me = q ! X(ans = 3 ^ send(rep; r; n; q; F) _ inc) (1.9)

9~n; ~p � new(node; n

i

; p

i

; q) _ updt(~n) _ send(ack; r; ~n) split(r) ^me = q (1.10)

inc 9n; p � rep(n; p; F) ^ ans 6= 3 (1.11)

send(rep; n; p; q;T) (in(q; n) ^ p = q _ 9s � rep(p; s;T) ^ to = n) ^me = q (1.12)

send(rep; n; p; q; F) (in(p; n) ^ p 6= q ^ void = T _ 9s�rep(p; s; F)^ to = n ^ ans = 3)^me = q (1.13)

9n � new(cnt; n; q; r) _ send(in; p

i

; s; n) in(s; r) ^me = q ^ q 6= s ^ void = F ^ ~reg = ~p (1.14)

node(k; n) _ cnt(k; n)! G(E(deliv(split(p))) ^ E(deliv(in(q; r))) ^ E(deliv(rep(s; t; b)))) (1.15)

node(k; n) _ cnt(k; n)! XG(inc _ updt(p; q; r; s) _ E(split(t)) ^ E(in(u; x)) ^E(rep(y; z; b))) (1.16)

End

Figure 1 Speci�cation of region trees.

These will be used in designing location management later on. At the top of each theory

presentation, we can see sequences of sorts plus the associated constants and operations

(data types), attribute and action symbols, denoting respectively �xed meaning data

objects, the local state and the messages and computations dealt with by these actors.

For instance, a region can receive a request to divide itself (split) in sub-regions (reg)

organised according to the four directions of the compass points (direc). Eventually,

continuations (cnt) are created in order to answer inclusion queries (in). These symbols

belong the language of region tree nodes and are generically formalised as follows:

De�nition 1 (Actor Signature) An actor signature � is a triple of disjoint and �nite fam-

ilies (�, A, �) where:

� � = (S,
) is an universe signature, i.e., S is a set of sort symbols and
 is an S

�

� S-

indexed family of operation symbols. We require that the sort of mail addresses addr 2 S;

� A is an S

�

� S-indexed family of attribute symbols;

� � = (�

e

;�

l

;�

c

), S

�

-indexed sets of action symbols with (�

e

[�

l

) \ �

c

empty. �

c

is a

set of local computation symbols. �

e

and �

l

represent respectively sets of events to be

requested from the environment and provided locally. These two sets consist in collections

of message and birth computation symbols, e.g. �

l

� �

l

b

and �

l

b

respectively.

For � as the empty sequence, we write an �� s-indexed family of symbols as if s were its index.

Given a set X, we denote the sub-set of X symbols of sort hs

1

; : : : ; s

n

i � s as X

hs

1

;:::;s

n

i;s

. We

shall also operate with subscripts (�

e

b

\l

b

) to denote operations on sub-sets of � (�

e

b

\ �

l

b

).

Axioms de�ned out of terms and formulae are also present in the previous speci�ca-

tion. An example is that asserting both the invariance of the attributes holding the mail

addresses of the node and its parent (terms in 1.2) and the creation of sub-regions in the

instant following an update (updt). Likewise, we use a formula to say that after the birth

of a node requests for split, in or rep may always be delivered (1.14), although they may

only be consumed if the node is not busy sequentially performing local computations

(1.15). To de�ne these notions, we assume that an in�nite family of rigid variables and

its classi�cation � according to the sorts of a signature � are given:

De�nition 2 (Terms) The S-indexed set of terms T

�

(�) is de�ned as follows, provided that

q 2 �

s

[

s

[A

s

, p 2

hs

1

;:::;s

n

i;s

, f 2 A

hs

1

;:::;s

n

i;s

and t

i

2 T

�

(�)

s

i

:

t ::= q j p(t

1

; : : : ; t

n

) j f(t

1

; : : : ; t

n

)

De�nition 3 (Formulae) The set F

�

(�) of formulae is de�ned by the mutual recursion be-

low, provided that c 2 �

hs

1

;:::;s

n

i

, t

i

2 T

�

(�)

s

i

, y 2 �

s

and g

i

2 F

�

(�):

g ::= beg j c(t

1

; : : : t

n

) j t

1

=

s

t

2

j Eg

0

j g

1

! g

2

j :g

1

j 9y � g

1

g

0

::= g j Xg

0

1

j g

0

1

Ug

0

2

j g

0

1

! g

0

2

j :g

0

1

j 9y � g

0

1

Terms consist in variables, nulary function and attribute symbols; or function and at-

tribute symbols applied to terms. We usually write a sequence of similar terms t

1

; : : : ; t

n

as

~

t. Formulae stand for the initial instant (beg); action occurrences; term equality; the

occurrence of a property in some possible behaviour (E), in the next instant (X) or until

another property holds (U); or formulae aggregation using �rst-order logic connectives.

These are the original CTL

�

constructs [5] enriched to express object-based notions.

The reader may wonder why new, deliv and send do not appear in our de�nitions

above. Actually, they stand for the abbreviation of logical actions as de�ned in [4].

Much in the way that ASCCS is a subset of SCCS [13], our calculus | which captures

synchronous object creation and reliable asynchronous message passing | can be seen

as a particularization of the synchronous object calculus of [7]. The aforementioned

connectives are de�nable therein and have the following informal meaning:

For of type formula reads

c; n; ~v

c

�

e

b

[l

b

; addr; T

�

(�) new(c; n; ~v

c

) creation of an actor with a given name

c; n; ~v

c

�

(e�e

b

)[(l�l

b

)

; addr; T

�

(�) send(c; n; ~v

c

) dispatch of a message to a speci�c actor

c; ~v

c

�

l�l

b

; T

�

(�) deliv(c; ~v

c

) delivery of a message

As for the actor primitive become, which allows actors to have mutable state space,

there is no treatment here. If it does not receive a higher-order interpretation, this

primitive is de�nable within the core actor theory as noticed in [1]. In designing mobile

systems, such a higher-orderness is not required.

Speci�cations characterise communities of actors with similar behaviour. What make

these actors di�erent from each other are their distinct names (of sort addr, pre�xed to

terms when talking about global properties) and their potentially distinct interactions

with the environment. Speci�cations are de�ned as theory presentations comprising a

signature and a set of axioms explicitly provided by the speci�er:

De�nition 4 (Actor Speci�cation) An actor speci�cation is a pair � = (�,) where � is

an actor signature and 	 is a �nite set of formulae over � (the speci�cation axioms).

To each speci�cation � is assigned a set of additional logical axioms called Ax

�

. These

axioms are provided in schematic form in the Appendix and constrain the behaviour

of the environment relative to the speci�ed actors. Such axioms become necessary,

together with the deductive system of the branching time temporal logic of objects and

the additional inference rules of the Appendix, in the veri�cation of actor properties.

For notational convenience, formulae containing derived �rst-order logic connectives

and inequalities stand for the usual translations. Moreover, free variables in axioms are

considered to be universally quanti�ed. Other admissible connectives are de�ned as:

For of type formula reads represents

g F

�

(�) Ag in any behaviour :E:g

g F

�

(�) Fg eventually in the future (g ! g)Ug

g F

�

(�) Gg always in the future :F:g

g

1

; g

2

F

�

(�) g

1

Wg

2

weak until Gg

1

_ g

1

Ug

2

g

1

; g

2

; p F

�

(�) g

1

i

p

g

2

initially precedes p! (:g

1

)W(g

2

^ :g

1

)

g

1

; g

2

; p F

�

(�) g

1

p

g

2

precedes g

1

i

p

g

2

^ g

1

! X(g

1

i

(p!p)

g

2

)

The unary connectives above are non-strict (they include the present) and usually appear

in branching-time logics. Conversely, the precedence connectives are strict and forbid the

simultaneous occurrence of some properties. In speci�cations, where p usually stands for

the occurrence of the initial instant (which we write as beg), their index is omitted. All

these temporal connectives are used, e.g., to state and reason about causality relations:

that a query in for the inclusion of a node n in a region, when consumed by any non-

empty node distinct from n, in the next instant results not only in the dispatch of many

similar queries to the respective sub-regions but also in the creation of a continuation

actor to process their answers (1.6), something that cannot happen otherwise (1.13).

Given some independently speci�ed actor communities, we may want to interconnect

them to de�ne communities of heterogeneous cooperating actors. This can be done by

providing language translations between their theory presentations obeying what follows:

De�nition 5 (Signature Morphisms) Given two actor signatures �

1

= (�

1

, A

1

, �

1

) and

�

2

= (�

2

, A

2

, �

2

), a signature morphism � : �

1

! �

2

consists of:

� a morphism of algebraic structures �

�

: �

1

! �

2

such that �

�

(addr

1

) = addr

2

;

� for each f 2 A

1

hs

1

;:::;s

n

i;s

, an attribute symbol �

�

(f) : �

�

(s

1

)� : : :� �

�

(s

n

)! �

�

(s) in A

2

;

� for each c 2 �

1

hs

1

;:::;s

n

i

, an action symbol �

(c) : �

�

(s

1

) � : : : � �

�

(s

n

) in �

2

such that

�

(�

e

1

) � �

e

2

, �

(�

l

1

) � �

l

2

, �

(�

c

1

) � �

c

2

, where �

(�

e

b

1

) � �

e

b

2

[l

b

2

and �

(�

e

1

�e

b

1

) �

�

(e

2

�e

b

2

)[(l

2

�l

b

2

)

, �

(�

l

b

1

) � �

l

b

2

and �

(�

l

1

�l

b

1

) � �

l

2

�l

b

2

so that �

(�

e

1

\l

1

) � �

e

2

\l

2

.

It is straightforward to de�ne inductively the translation of symbols, classi�cations, terms,

formulae and sets thereof under � .

From the �rst item, we can see that interconnected actor communities are named us-

ing the same sort, namely addr. In addition, the third item says that event symbols

representing requests of a community to its environment can be associated with events

internally provided by a distinct community (eg. �

(�

e

b

1

) � �

e

b

2

\l

b

2

), meaning that

messages can be dispatched to and actors created within one community from another.

Technically, the translation of connected theory presentations induced by signature

morphisms does not capture the expected interconnection of actor behavior in a precise

way. This is due to the existing logical axioms of the original theories, which are not

translated by such morphisms. We are obliged to use an alternative notion:

De�nition 6 (Theory or Speci�cation Morphisms) Given two actor speci�cations �

1

=

(�

1

, 	

1

) and �

2

= (�

2

, 	

2

), a speci�cation morphism � : �

1

! �

2

is a signature morphism

such that `

�

2

�(g) for every g 2 	

1

[Ax

�

1

.

We should stress that connecting speci�cations using theory morphisms is analogous to

providing links between identi�ers in distinct actor programs [1]. As we shall see later,

to verify actor properties, we also need to identify which actors are assumed to exist in

the environment and which are able to receive messages from the outside, as in [2].

3 INFORMAL REQUIREMENTS OF LOCATION MANAGEMENT

A central problem in designing and implementing software systems for networks of mobile

users and devices is how to manage object location. An extensive description of the

problem can be found in the literature (cf. [8, 12, 18]). In this section, we provide

an informal list of requirements strictly imposed by mobility. In the next section, we

enumerate some design decisions based on this list and propose a formal speci�cation

for the corresponding mobile architecture.

We can classify the requirements of location management in three families, the �rst

concerning the nature of location information and located objects, the second about the

process of acquiring location information and the third on how to deal with it. In what

follows, we ignore real time issues and provide a partial list of functional requirements:

1. A location information must be dynamic, in the sense that, at each time, it may be a

distinct instance of a class of objects.

2. A location information must be mutable, in the sense that, at each time, it may be

an instance of a distinct class of objects.

3. Located objects may be users or devices, at least.

4. Location information acquisition must be unintrusive, which means that the acquisi-

tion process cannot intrude user behaviour nor require user intervention.

5. Location information acquisition must o�er support to multiple location observations,

which means that simultaneous observations producing distinct location information

for the same object may occur.

6. Location information management must support indeterminacy, which means that

location information for some objects may not be available at some instant.

7. Location information management must o�er support to object naming, which is the

assignment of meaningless unique names to located objects.

The �rst two items should not be confused. While it is obvious that mobile object

locations may change as time passes, meaning that they are dynamic, it is not so obvious

that they should also be mutable. The reason for this is that a location service may

provide information with distinct accuracies or that multiple services may be used [12].

Actor Sensor

data types addr; int (0; 1;MAX : int; + : int� int! int)

attributes srv; obj; loc; id : addr; tick : int

actions sens(addr; addr; addr; addr) : local+ extrn birth;

reloc(addr); set(int); obs : local computation;

detect(addr; addr); unreach(addr; addr) : extrn message

axioms n; p; q; r : addr; v : int

sens(n; p; q; r)! srv = n ^ obj = p ^ loc = q ^ id = r ^ tick = 0 (2.2)

reloc(n) ^ srv = p ^ obj = q ^ id = r ^ tick = v ! X(srv = p ^ obj = q ^ id = r ^ tick = v) (2.3)

reloc(n)! X(loc = n) (2.4)

set(v) ^ srv = n ^ obj = p ^ loc = q ^ id = r ! X(srv = n ^ obj = p ^ loc = q ^ id = r) (2.5)

set(v)! X(tick = v) (2.6)

obs ^ srv = n ^ loc = p ^ (obj = q _ id = q)! X(set(0) ^ send(detect; n; q; p)) (2.7)

sens(n; p; q; r)! G(:obs ^ tick = MAX$ send(unreach; srv; obj; loc)) (2.8)

sens(n; p; q; r)! G(:obs ^ tick = MAX! set(0)) (2.9)

sens(n; p; q; r)! G(:set(0) ^ :obs $ set(tick + 1) ^ send(detect; srv; id; loc)) (2.10)

send(detect; n; p; q)! src = n ^ loc = q ^ (id = p ^ set(v) _ obj = p ^ set(0)) (2.11)

set(0) obs _ tick + 1 = MAX (2.12)

End

Figure 2 Speci�cation of sensors.

4 LOCATION MANAGEMENT DESIGN IN A FORMAL SETTING

Based on the previous requirements list, we make our �rst design decision following [8]

by using references to objects denoting spatial regions instead of dealing with location in-

formation directly. In this way, each located object acquires a new attribute (loc), which

is annotated with the mail address of an object representing a location space region. If

we use region trees as described in Section 2 for this purpose, we treat both the dynamic

and mutable character of location information with this decision: as an attribute, loca-

tion information can always be changed; as a reference, it does not constrain the shape

and size of location observations. We make, however, the simplifying assumption that

spatial regions are disjoint squares, due to the structure of such trees.

In order to treat the requirements concerning location information acquisition and

management, we adopt the speci�cation of sensors in Figure 2. Each sensor is created

with knowledge of a location service mail address (srv) and is responsible for producing

sequential observations (obs) of a named user (obj) in the speci�c region. Sensors are

mobile as well and detect themselves in the monitored region (2.7 and 2.9). We omit their

straightforward generalisation to deal with the observation of several distinct objects.

Each sensor keeps an internal clock which is reset | set(0) | after MAX cycles or

when the user is observed. Axiom 2.11 guarantees that resets do not happen unless this

condition is ful�lled. Indeterminacy is treated by this clocking mechanism, which signs

to the location service that the user is unreachable (unreach) whenever an observation

does not happen before the deadline MAX (2.7). A detect message with the user location

is sent to the service otherwise (2.6). Multiple observations are obtained by having many

sensors dealing with the same located object. Unintrusivity is also treated as there is no

causal connection between the production of observations and user behaviour.

Actor MobileAgent

data types addr; bool (T; F : bool)

attributes me; id; loc; to : addr; fwdg : bool

actions ag(addr; addr; addr) : local+ extrn birth;

redir(addr) : local computation;

sub(addr; addr) : extrn message;

fwd(addr);mv(addr; addr); cp(addr; addr; addr) : local+ extrn message

axioms n; p; q; r; s; t; u; x; y; z : addr

ag(n; p; q)! me = n ^ id = p ^ loc = q ^ fwdg = F ^ to = n (3.2)

redir(n) ^me = p ^ id = q ^ loc = r ! X(me = p ^ id = q ^ loc = r ^ fwdg = T ^ to = n) (3.3)

fwd(n)! X(redir(n)) (3.4)

mv(n; p) ^ fwdg = F ^me = q ^ id = r ! X(redir(q) ^ send(cp; n; p; q; r)) (3.5)

mv(n; p) ^ fwdg = T ^ to = q ! X(send(mv ; q; n; p)) (3.6)

cp(n; p; q) ^ loc = r ! X(9! s � new(ag; s; s; q; r) ^ send(fwd; p; s) ^ send(sub; n; s; r)) (3.7)

redir(n) fwd(n) _ 9p; q � (mv(p; q) ^me = n ^ fwdg = F) (3.8)

9n; p � new(ag ; n; p; q; r) _ send(fwd; s; n) _ send(sub; t; n) cp(t; s; q) ^ loc = r (3.9)

send(mv ; n; p; q) mv(p; q) ^ to = n ^ fwdg = T (3.10)

send(cp; n; p; q; r) mv(n; p) ^me = q ^ id = r ^ fwdg = F (3.11)

ag(n; p; q)! G(E(deliv(fwd; s)) ^E(deliv(mv ; t; u)) ^ E(deliv(cp; x; y; z))) (3.12)

ag(n; p; q)! XG(:redir(r)! E(fwd(s)) ^E(mv(t; u)) ^ E(cp(x; y; z))) (3.13)

End

Figure 3 Simpli�ed speci�cation of mobile agents.

If we realise the sensors of Figure 2 as optical devices connected to the architecture

through radio frequency links, for instance, software mobility arises only when located

object agents are considered. Such agents are meant to follow located objects through

the architecture providing location dependent functionality such as ubiquitous message

delivery and transportable user sessions [18]. Although we leave this additional func-

tionality unspeci�ed here, we present a speci�cation of mobile agents in Figure 3.

We choose to capture mobility as localised agent replication. A mobile agent may

receive a request to move to the location of another agent (mv), presumably located

closer to the object the former represents. If an agent is currently moving to a new

location, such requests will be delayed by self-forwarding until the agent �nishes to move

(3.5). In order to move, the original agent issues a request for the correctly located

agent to create a local copy (cp) of its own (3.4), supplying in the message any required

information for the copy (here in particular its name). After consuming this kind of

message, an agent creates the desired replica and noti�es both the original agent and

the requesting service that the located object representative can be substituted (3.6).

In order to ensure coordination between sensors and agents, a location service must

guarantee that the asynchronous messages they exchange are correctly addressed and

ordered. The situation is better explained by the diagram in Figure 4. Once a located

object is detected in a new region (at), the location service has to �nd a mobile agent in

that region to request the creation of a replica of the moving agent there. The location

space is recurrently queried (in) until such an agent is found. Then, the service requests

the agent of the relocated object to move the place of the correctly located agent (move).

At the end, the service is noti�ed (sub) so that the old agent can be discarded while

h

�

�

@

@

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

��

?

�

�

�

�

��

H

H

H

H

Hj

H

H

H

H

HY

�

�

�

�

�*

H

H

H

H

HY

�

�

�

�

��

6

H

H

H

H

Hj

6

�

�

�

�

��

H

H

H

H

Hj

?

Sensor

User

Continuation

Service

Old Mobile

Agent

Correctly Located

Mobile Agent

New Mobile

Agent

rep/rep

new cnt

in/in

res/rep

in/in

res/rep

detect/

at

unreach/

out

mv/move

sub/done

cp/

cp

Location

Space

Location

Subspace

new ag

fwd/fwd

Figure 4 Internal event
ow of the Location Manamegent Architecture.

forwarding all possibly dispatched additional move requests to the new agent (fwd).

Since the location service has to associate located object names (id) with mobile

agents, has to keep track of their location (loc) and has to put agents in contact to support

mobility, we consider that servers providing compartmentalised bits of this functionality

for each object are organised in circular lists, adopting the speci�cation in Figure 5. Each

server also records if there is no location information available for the object (nl). This

knowledge is used to postpone answering location queries (?) until the object location

becomes known (4.7 and 4.8).

Every request to the location service circulates around the linked list until the correct

recipient is found. In case an observation from a sensor arrives carrying a new object

location (at), a request for the rest of the list to �nd some agent placed therein is issued

aiming to support moving to that location (4.9). For each located object registered in

the service, the location space will be queried in a two step process: a continuation actor

to process the answer of the query will be created (4.13), and this new actor will either

request the original agent to move (4.14), if the current agent is located accordingly, or

forward the query to the next list element (4.15).

Although illustrative, the informal description of the relationship between each pair of

speci�cations should not substitute their formal composition, which is still missing here.

The diagram in Figure 4 gives a good clue on what remains to be de�ned: the \physical

communication channels", which are formally de�ned using speci�cation morphisms. For

every pair of speci�cations, each of them represented by a distinguished geometric �gure,

that diagram shows how to relate their message symbols. For instance, the messages mv

and sub of agents should be respectively associated withmove and done of servers. Notice

that relating external to local symbols yields the only possible direction of the message

ow. Also notice in our example that we cannot produce a direct translation either

from the theory of agents into that of servers or in the opposite direction. Therefore, to

interconnect these entities we need to de�ne mediating theory presentations to serve as

Actor Server

data types addr; bool (T; F : bool)

attributes me; nxt; loc; id; ag : addr; nl : bool

actions srv(addr; addr; addr; addr; addr) : local+ extrn birth;

ch(addr; addr; addr; bool) : local computation;

in(addr; addr);move(addr);@(addr; addr); ack(addr) : extrn message;

ins(addr; addr; addr; addr); done(addr; addr); res(addr; addr; bool) : local+ extrn message;

at(addr; addr); out(addr; addr) : local+ extrn message;

mvrq(addr; addr; addr); ?(addr; addr) : local+ extrn message

axioms n; p; q; r; s; t; u; x : addr; b : bool

srv(n; p; q; r; s)! me = n ^ nxt = p ^ id = q ^ loc = r ^ ag = s ^ nl = F (4.2)

ch(n; p; q; b) ^me = r ^ id = s ^ nl = b! X(me = r ^ id = s ^ nl = b) (4.3)

ch(n; p; q; b)! X(nxt = n ^ loc = p ^ ag = qnl = b) (4.4)

ins(n; p; q; r)^nxt = s ^ loc = t ^ ag = u ^ nl = b!X(9x�new(srv ; x; x; s; n; p; q)^ch(x; t; u; b)) (4.5)

ins(n; p; q; r) ^ nxt = s! X(9t � new(srv ; t; t; s; n; p; q) ^ send(ack; r; t)) (4.6)

done(n; p) ^ nxt = q ! X(ch(q; p; n; F)) (4.7)

?(n; p) ^ id = n ^me = q ^ loc = r ! X(nl = F ^ send(@; p; n; r) _ send(?; q; n; p)) (4.8)

?(n; p) ^ id 6= n ^ nxt = q ! X(send(?; q; n; p)) (4.9)

at(n; p) ^ id = n ^me = q ^ nxt = r ^ ag = s ^ (loc 6= p _ nl = T)! X(send(mvrq; r; s; p; q)) (4.10)

at(n; p) ^ id 6= n ^ nxt = q ! X(send(at; q; n; p)) (4.11)

out(n; p) ^ id = n ^ nxt = q ^ loc = r ^ ag = s! X(ch(q; r; s;T)) (4.12)

out(n; p) ^ id 6= n ^ nxt = q ! X(send(out; q; n; p)) (4.13)

mvrq(n; p; q) ^ nxt = r ^ loc = s ^ ag = t! X(9!u � new(srv ; u; q; r; p; n; t) ^ send(in; s; p; u)) (4.14)

res(n; p;T) ^me = q ^ id = r ^ ag = s! X(send(move; r; s; q)) (4.15)

res(n; p; F) ^me = r ^ nxt = s ^ loc = t ^ id = u! X(send(mvrq; s; u; t; r)) (4.16)

.

.

.

and the usual axioms to guarantee absence of unsolicited responses and enableness

.

.

.

End

Figure 5 Speci�cation of location service nodes.

connectors. Their nature is illustrated by the diagram in Figure 6.

To de�ne the mobile architecture in a formal manner, we call each mediating speci�-

cation in Figure (6.a) a Connector. Each of them contains two external message sym-

bols only (without axioms as well) and hence translations including their contents after

necessary renamings into the connected theories trivially exist. Taking connectors, con-

nected theories and the morphisms betweem them, the composite theory presentations

are de�ned up to isomorphism by categorical constructions called pushouts (amalgamed

sums), which always exist and are �nite for any �nite number of actor speci�cations [4].

De�ned in this way, each Component in the �gure contains all the renamed symbols

and axioms of the connected theories, but the symbols identi�ed by the connectors are

equalised. That is why, e.g., a message move from servers can be understood as mv

when it is dispatched to an agent, no matter its name in the composite component. The

detailed de�nition of connectors and their morphisms appears in Figure (6.b).

(b)

Sensor � Server

detect b at

unreach a out

� -

� -

MAg � Server

mv d move

sub c done

� -

� -

Server � RTN

in f in

res e rep

� -

� -

(a)

�

�

�

��

A

A

A

AK

@

@

@

@I

@

@

@

@I

�

�

�

��

�

�

�

��

. @

@

@

@I

@

@

@

@I

�

�

�

��

�

�

�

��

.

A

A

A

AK

�

�

�

��

�

�

�

��

@

@

@

@I

�

�

�

��

Component2

Component1

Component3

MobileAgent

(MAg)

RegionTreeNode

(RTN)

Server

Sensor

Connector2 Connector3Connector1

MobileArchitecture (MAr)

Figure 6 Composition of the architecture: Shared actors (a) and action symbols (b).

5 VERIFYING LOCATION MANAGEMENT PROPERTIES

As we have already mentioned, the existence of morphisms to connect separated ac-

tor speci�cations does not guarantee that interaction between actors in the respective

communities can occur. Here, an analogy with telecommunication systems is useful to

illustrate the situation: even if the physical cables to connect the private equipment

of a customer to the network exist, it cannot receive phone calls unless assigned to an

appropriate number. Therefore, \logical channels" are also needed in dealing with any

kind of global property. These logical channels are captured here as an assumption on

the con�guration of the heterogeneous actor community.

Since the location space is a relatively separated component of our architecture, let

us use it to exemplify how a property can be veri�ed. Assume that the environment

always creates region tree nodes con�gured correctly, providing the right name for the

node and its parent (which is the node itself in the case of the root) in the creation:

r:new(reg; s; t; u)! s = t ^ (u = r _ u = s) (1)

The main functionality provided by the location space is the support to queries. Hence,

every node s should eventually answer queries addressed to it:

r:send(in; s; t; u)! F(9x; v � x:send(rep; r; s; t; v)) (2)

The usual procedure for proving interaction properties of actor communities is: (a)

�nd a local invariant of the recipient; (b) show that the invariant guarantees that this

actor will eventually become enabled for delivery/consumption of the message; (c) prove

that the dispatch eventually leads to the message delivery and this guarantees the con-

sumption, which in turn produces the outcome of the interaction. The reader should

notice that these steps correspond to the application of the rules COM followed by

RESP , both described in the Appendix, which capture the fairness requirements of

reliable message passing and �nite consumption delay present in the Actors model [1].

Returning to the location space example, it is not di�cult to see that the invariant

of each region tree node is:

Inv � (8d � reg[d] = me _ void = F) ^ (0 � ans � 3) (3)

To prove this, �rst observe that Inv is a precondition for the occurrence of birth actions

of RTN, node and cnt, in Axiom 1.1. Moreover, each local computation preserves this

property, meaning that occurrences of updt do not change the logical value of the �rst

conjunct while keeping ans unmodi�ed, according to 1.2, and inc is only allowed to

happen if the value of ans remains in the interval [0,3], from Axioms 1.3 and 1.10. An

application of rule SAFE, also described in the Appendix, shows that Inv always holds.

Now, suppose that s, the recipient, is an empty node. Let p as in rule RESP be

Inv _ init. Since Inv is invariant, its disjunction with init is preserved by every local

computation of the actor and therefore the �rst premise of that rule holds. In passing,

notice that updt and inc cannot continuously happen since they are causally connected

to the occurrence of split or rep and the axiom scheme 10: in the Appendix says that such

actions can only happen one at a time. From Axiom 1.15, it is clear that p guarantees the

eventual enableness for query consumption, thus the third premise in the aforementioned

rule also holds. Making q in the same rule be the reply, we can see from Axioms 1.6 and

1.8 that it will eventually happen. A similar but simpler rationale can be used to show

through the application of COM that once the query is dispatched, it will eventually be

delivered. Chaining these results, we conclude a step in the veri�cation of (2).

To complete the veri�cation of (2), consider now those cases where the cell has already

been split, and so answering a query may require creating auxiliary continuation actors.

Verifying such cases of chained interaction requires the following derived rule [5]:

[WELL] 1: P (x)! F(Q _ 9y � (y � x ^ P (y)))

(9x � P (x))! FQ

where � is a

well-founded relation

We usually take P (x) as a message dispatch by an actor with mail address x and Q as

the outcome of its consumption. To prove the non-trivial case of (2), we need to apply

such rule twice, one to show that the query eventually reaches the correct region or

that all the location space terminal nodes are queried without matching the parameter

of the message, and the other to show that the reply will proceed through the created

continuations until it reaches the original actor. For the second case, e.g., the required

well-founded relation can ben taken as R

p

(x; y)

def

=

(y:to = x) ^ (y 6= p). The anti-

re
exivity of R

p

derives from the use of Axiom 1.6 in rule EXIT , which shows that a

node is prevented from being a continuation of itself, and since to is invariant, R

p

indeed

de�nes a well-founded relation. Therefore, we can applyWELL and complete the proof.

Although we have omitted this detail in the informal proof above, the assumption

(1) is fundamental to ensure that the answer to the query will be addressed to the

correct actor, be it dispatched by the recipient itself or by a continuation actor. It is

also important to mention that, formally, queries are not expected to come from within

the community of region tree nodes, but from that of sensors. Due to the morphisms

connecting these communities to each other, the complex properties of the system can

be decomposed and translated into lemmas to be proved in a localised manner, using

the axioms of just one theory presentation.

In a more realistic context, a reasonable assumption for our architecture would con-

sider for instance that for every region there is a named server associated to an agent and

dissociated from any sensor, which could be regarded as the meta-level actors required

to exist in order to support resource management activities [19], in our case the access

to some location. The formal veri�cation of properties of our architecture considering

these assumptions appears elsewhere. Of course, (2) could be (re)used there and other

properties would be veri�ed almost in the same manner.

6 FINAL REMARKS

In this paper, we have presented an approach to the design of object-based mobile

systems using a temporal logic specially tailored to the Actors model [1]. In [4] we

investigated the requirements the model poses to the de�nition a logic and proposed

a proof-theory which constrains the synchronous value-passing calculus of [7] to deal

only with synchronous object creation and asynchronous message passing for named

recon�gurable objects. It turns out that this logic can be used without any modi�cation

to capture mobility. Basically, our approach consists in annotating located objects with

an additional attribute, containing a reference to location objects as in [8]. The advantage

of approaching mobility in this extra-logical manner is that speci�cations can be de�ned

in isolation to be subsequently combined and global proofs can be decomposed in lemmas

to be locally veri�ed much in the way we design any system using the same logic.

A few related work can be gathered in the literature. In [20] additional notation

is suggested to treat mobility using the programming logic of UNITY [3]. During the

re�nement process, speci�cations are augmented with logical variables to handle time and

action, which are built in here, and with concrete locations. As shown in the literature,

there are many bene�ts in using referential location information instead [8, 12]. In

addition, if mobility arises in a set of requirements, that approach would not be so

e�ective: initial speci�cations are required before any mobility aspect can be considered.

In the process calculi literature, mobility has received a lot of attention, motivating

the evolution of the static process con�gurations of SCCS [13] to the dynamic ones of

the �-calculus [14]. We have shown here that many applications of the �-calculus can

be treated using our logic. For instance, we can simulate recursion creating continu-

ation actors and exchanging asynchronous messages; dynamic data structures can be

represented as objects and so on. More importantly, mobility receives a rather di�erent

treatment as process in the �-calculus are modelled as terms and here objects are rep-

resented by theory presentations. This is due to di�erent design decisions: while it is

relatively easier to de�ne notions of simulation and reduction for processes, it is possible

to specify and reason about objects as �rst-class entities using the same more expressive

language, which we feel more appropriate to represent the real world. The same may

only be achieved by adjoining a modal or temporal logic to process calculi. It would be

interesting to compare our logic to those presented in [15] in terms of expressive power.

As a case study, we presented here the design of a location management architecture

for networks of mobile users and devices. We are currently investigating the occurrence

of failures in this framework in order to access if our logic is still convenient for speci-

fying fault-tolerant behaviour. An alternative direction for further work is to re�ne the

proposed speci�cations to obtain a concrete implementation. Re�nement theories for

logics of actions and objects already exist [6, 11] and could be adapted to our case. A

challenge in such an e�ort would be to achieve a compositional development process,

where the re�nement of components and interconnections in isolation always yield an

implementation for the whole system.

Acknowledgements: The author would like to thank two anonymous referees for their

valuable suggestions to improve an earlier version of this paper. This work has been

�nancially supported by CNPq, the Brazilian National Research Council.

REFERENCES

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, 1986.

[2] G. Agha, I. A. Mason, S. Smith, and C. Talcott. A foundation for actor computation. Journal of

Functional Programming, 7(1):1{72, 1997.

[3] K. M. Chandy and J. Misra. Parallel Program Design, A Foundation. Addison-Wesley, 1988.

[4] C. H. C. Duarte. Towards a proof-theoretic foundation for actor speci�cation and veri�cation. In

P.-Y. Schobbens and A. Cesta, editors, Proc. 4th Workshop on Formal Models of Agents (Mode-

lAge'97), pages 115{128, January 1997. Certosa di Pontignano, Italy.

[5] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theoretical

Computer Science, volume B: Formal Models and Semantics, pages 996{1072. Elsevier, 1990.

[6] J. Fiadeiro and T. Maibaum. Sometimes \tomorrow" is \sometime": Action re�nement in a

temporal logic of objects. In D. Gabbay and H. Ohlbach, editors, Temporal Logic, volume 827 of

Lecture Notes in Arti�cial Intelligence. Springer Verlag, 1994.

[7] J. Fiadeiro, C. Sernadas, T. Maibaum, and G. Saake. Proof-theoretic semantics of object-oriented

speci�cation constructs. In R. A. Meersman, W. Kent, and S. Khosla, editors, Proc. IFIP WG

2.6 Working Conference on Object-Oriented Databases: Analysis, Design and Construction, pages

243{284. North Holland, 1991.

[8] A. Harter and A. Hopper. A distributed location system for the active o�ce. IEEE Network,

8(1):62{70, January 1994.

[9] C. B. Jones. Systematic Software Development Using VDM. Prentice Hall, 2nd edition, 1990.

[10] D. Lam, J. Jannink, D. C. Cox, and J. Widom. Modelling location management in personal com-

munication systems. In Proc. of International Conference on Universal Personal Communications

(ICUPC'96). IEEE Press, 1996.

[11] L. Lamport. The temporal logic of actions. ACM Transactions on Programming Languages and

Systems, 16(3):872{923, 1994.

[12] U. Leonhardt and J. Magee. Towards a general location service for mobile environments. In Proc.

3rd International Workshop on Service in Distributed and Networked Environments (SDNE'96),

pages 43{50. IEEE Press, June 1996.

[13] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25:267{310, 1983.

[14] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II. Information and

Computation, 100(1):1{40 and 41{77, September 1992.

[15] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. Theoretical Computer

Science, 114(1):149{171, 1993.

[16] H. Samet. The quadtree and related hierarchical data structures. ACM Computing Surveys,

2(2):187{260, June 1984.

[17] J. M. Spivey. The Z Notation: A Reference Manual. International Series in Computer Science.

Prentice-Hall, 1989.

[18] M. Spreitzer and M. Theimer. Architectural considerations for scalable, secure, mobile comput-

ing with location information. In Proc. 14th International Conference on Distributed Computing

Systems, pages 29{38. IEEE Computer Society Press, June 1994.

[19] N. Venkatasubramanian and C. Talcott. A meta architecture for distributed resource management.

In Proc. Hawaii International Conference on System Sciences, pages 124{133. IEEE Computer

Society Press, January 1993.

[20] C. D. Wilcox and G.-C. Roman. Reasoning about places, times and actions in the presence of

mobility. IEEE Transactions on Software Engineering, 22(4):225{247, April 1996.

APPENDIX

We provide here the set of axiom schemes and inference rules which make our logic

suitable for specifying and reasoning about actor communities. These are meant to

particularize the axiomatisation of the underlying many sorted �rst order branching time

temporal logic with equality adopted. As in [7] we also require that variables are rigid,

attributes have a functional time-dependent interpretation and actions denote atomic

events. The reader is referred to [4] for further details.

De�nition 7 (Axiom Schemes) Given an actor speci�cation � = ((�, A, �),), the fol-

lowing are logical axiom schemes for �-actors:

1:

W

c2�

c

9~v

c

� n:c(~v

c

) _

V

f2A

8 ~v

f

; k � n:f(~v

f

) = k ! X(n:f(~v

f

= k))

2:

V

c2�

(e�e

b

)[(l�l

b

)

8~v

c

� beg! G(:n

1

:init) _

V

n2~v

c

addr

[fn

2

g

n

1

:Wait(n;:send(c; n

2

; ~v

c

))

3:

V

c2�

l�l

b

8~v

c

� beg! (:n:deliv(c; ~v

c

))W(n:init)

4:

V

c2�

(l�l

b

)[c

8~v

c

� beg! (:n:c(~v

c

))W(n:init)

5:

V

c2�

e

b

[l

b

8~v

c

� beg! G(:n

1

:init) _

V

n2~v

c

addr

[fn

2

g

n

1

:Wait(n;:new(c; n

2

; ~v

c

))

6:

V

c2�

l

b

beg! G(9n

1

; n

2

; ~v

c

� E(n

1

:new(c; n

2

; ~v

c

)))

7:

V

c2�

l

b

8~v

c

� (9n

1

� n

1

:new(c; n

2

; ~v

c

)! X(n

2

:c(~v

c

))) ^ (n

2

:c(~v

c

)

i

beg

9n

1

� n

1

:new(c; n

2

; ~v

c

))

8:

V

c;d2�

l

b

d6=c

8~v

c

�n

1

:new(c; n

2

; ~v

c

)!

/

9n

3

; ~v

c

0

; ~v

d

� ((n

3

6= n

1

_ ~v

c

0

6= ~v

c

)^n

3

:new(c; n

2

; ~v

c

0

))_n

3

:new(d; n

2

; ~v

d

)

9:

V

c;d2�

l�l

b

d6=c

8~v

c

� n:deliv(c; ~v

c

)!

/

9~v

c

0

; ~v

d

� (~v

c

0

6= ~v

c

^ n:deliv(c; ~v

c

0

)) _ n:deliv(d; ~v

d

)

10:

V

c;d2�

(l�l

b

)[c

c6=d

8~v

c

� n:c(~v

c

)!

/

9~v

c

0

; ~v

d

� (~v

c

0

6= ~v

c

^ n:c(~v

c

0

)) _ n:d(~v

d

)

where:

Wait(n; g) � (g)W(init) ^ (g)W(Acq(n))

Acq(n) �

W

d2�

l�l

b

9~v

d

� (deliv(d; ~v

d

) ^ n 2 ~v

d

) _

W

d2�

l

b

9~v

d

� (d(~v

d

) ^ n 2 ~v

d

) _

W

d2�

e

b

9~v

d

� new(d; n; ~v

d

)

The �rst scheme says that each actor has encapsulated state; only its local computations

can change attribute values. The next four schemes say that either an actor is not

created within a community or dispatch, delivery and consumption of messages plus

local computations and requests for creation do happen before its birth. Notice that

the second and �fth schemes are more liberal if the actor is never created but are more

restrictive otherwise requiring actor names to become known �rst due to delivery of a

message, the birth of the source or the creation of the target before they could be used in

the task. The sixth scheme says that it is always possible to create some new actors and

the seventh states that requests for creation and actual births are causally connected.

The last three schemes constrain concurrency, i.e. that actors cannot be simultaneously

created with the same name; that messages cannot be delivered in parallel to the same

actor; and that messages and local computations cannot be processed at the same time;

the last axiom being supplied only to simplify speci�cation and reasoning.

De�nition 8 (Rules of Inference) Given an actor speci�cation � = ((�, A, �),), the

following are inference rules for deriving properties of existing �-actors, where each p, p

0

and

q is an arbitrary formula over a single actor and n, n

0

and m are terms of sort addr:

[EXIST] 1: p

0

! 9~v

d

� n

0

:new(d;m; ~v

d

)

2: p! q _

W

c2�

l

b

9~v

c

� n:new(c;m; ~v

c

)

d 2 �

l

b

p

0

! XG(p! q)

[SAFE] 1:

V

c2�

l

b

8~v

c

� n:c(~v

c

)! q

2:

V

c2�

c

8~v

c

� n:c(~v

c

) ^ q ! Xq

Gq

[INV] 1:

V

c2�

c

8~v

c

� n:c(~v

c

) ^ q ! Xq

q ! Gq

[RESP] 1:

V

c2�

c

8~v

c

� n:c(~v

c

) ^ p! X(p _ n:d(~v

d

))

2: n:d(~v

d

)! Fq

3: p! FE(n:d(~v

d

))

d 2 �

l�l

b

n:deliv(d; ~v

d

)! X(Fp! Fq)

[COM] 1:

V

c2�

c

8~v

c

� n:c(~v

c

) ^ p! X(p _ n:deliv(d; ~v

d

))

2: n:deliv(d; ~v

d

)! Fq

3: p! FE(n:deliv(d; ~v

d

))

d 2 �

l�l

b

n

0

:send(d; n; ~v

d

)! X(Fp! Fq)

The rule EXIST , based on the fact that an actor name cannot be reused once it is

given to some actor, guarantees a local safety property from the con�guration of the

actors in the environment. SAFE and INV are the usual rules for verifying local safety

and invariance properties. Rules COM and RESP capture the fairness requirements

for actors and are to verify that a delivery or a message consumption eventually happen

due to an interaction if the actor ever becomes enabled for a similar task in the future.

