See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328497508

#### Digital Transformation and Software/Requirements Engineering

Presentation · October 2018

| citations<br>0 |                                                                                  | READS<br>471 |                                  |  |  |
|----------------|----------------------------------------------------------------------------------|--------------|----------------------------------|--|--|
| 2 author       | s:                                                                               |              |                                  |  |  |
| (R = 2))       | Carlos Henrique Cabral Duarte<br>Brazilian Institute of Geography and Statistics | 20           | Christof Ebert<br>Vector         |  |  |
|                | 55 PUBLICATIONS 223 CITATIONS                                                    |              | 245 PUBLICATIONS 3,566 CITATIONS |  |  |
|                | SEE PROFILE                                                                      |              | SEE PROFILE                      |  |  |

#### Some of the authors of this publication are also working on these related projects:



All content following this page was uploaded by Carlos Henrique Cabral Duarte on 12 March 2021.

Digital Transformation and Software/Requirements Enginering

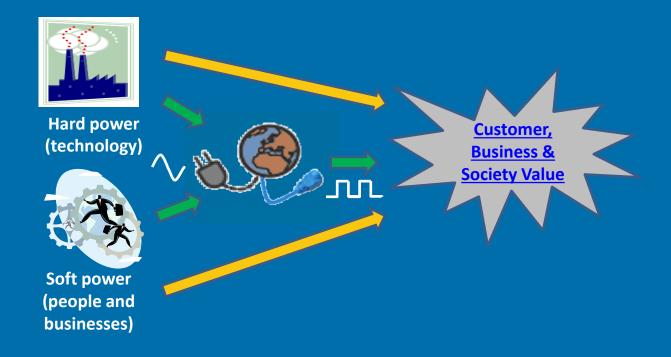
Carlos Henrique C. Duarte Brazilian Development Bank (BNDES) Institute of Electric and Electronic Engineers (IEEE), Computer Society

## Digital Transformation and Software/Requirements Engineering

### **Carlos Henrique C. Duarte**

Sponsorship:




Support:



### **Talk Overview**

- 1. What is Digital Transformation (DX)?
- 2. Why DX?
- 3. DX Who and Where?
- 4. How DX?
- 5. DX and Software/Requirements Engineering
- 6. Summary and Take-Aways

### **1. What is Digital Transformation?**



- Digital Transformation (DX) is the adoption of (usually disruptive) digital technologies to increase value perception, productivity and welfare;
- DX results from the orchestrated and convergent usage of technologies in order to maximize value addition for persons, businesses and society;

### **1.** The Trends Behind DX

#### **Technology Perspective:**

- 1. From analog to digital processing;
- 2. From discrete to continuous processes;
- 3. From process centric to customer centric focus;

#### Personal/Business Perspective:

- 1. From individual task-based to strategic thinking;
- 2. From individual competencies to holistic and integrated views;
- 3. From ownership-based to access-based businesses models;
- 4. From isolated to integrated collaborative business ecosystems;





### 1. The DX Opportunity: Access-Based Businesses

| Company<br>Name | Market<br>Segment | Company<br>Foundation | Digital<br>Market<br>Share | Total<br>Market<br>Share | Market Size<br>Estimation<br>Year | Studied<br>Market<br>Coverage | Market Data<br>Source         | Main Digital<br>Competitor |
|-----------------|-------------------|-----------------------|----------------------------|--------------------------|-----------------------------------|-------------------------------|-------------------------------|----------------------------|
| a               | Retail            | 1993                  | 49,0%                      | 5,0%                     | 2018                              | USA                           | bigcommerce.com               | Ebay                       |
| $\bigotimes$    | Hospitality       | 2008                  | 19,0%                      | 5,0%                     | 2018                              | USA                           | vox.com /<br>hotel-online.com | HomeAway                   |
| Э               | Transportation    | 2009                  | 67,0%                      | 0,1%                     | 2018                              | USA                           | vox.com /<br>uber.com         | Lyft                       |
| ſΩ              | Banking           | 2013                  | 54,0%                      | 2,6%                     | 2018                              | Brazil                        | febraban.org.br               | Banco Inter                |

### **1. The DX Business Opportunity**

- The organization of persons and business in digital networks is a main source of emerging added value;
  - Due to the collaborative and combinatorial effects propelled by digital technologies;
- Digitization introduces opportunities to amplify and maximize value generation;

Due to the complete migration of persons and businesses to digital environments, with the additional interactions thereof;

The World Economic Forum (WEF) estimates the market size for DX in US\$100 trillion (2017). Just half of the existing companies have initiated their DX efforts.

McKinsey predicts that, by 2030, 14% of the global workforce – 375 million workers – may have to find new occupations due to DX efforts.

### **1. The DX Societal Opportunity**

National governments, multilateral organizations and industry associations have produced strategic foresight studies to ground their long-term policies:

| Perspective | Objective                                                                                                                                           |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Social      | Foster the development of a more innovative and collaborative culture in industry and society                                                       |  |  |  |
|             | Change the education system to provide new skills and future orientation to persons so that they can achieve excellence in digital work and society |  |  |  |
|             | Create and maintain digital communication infra-structures and ensure their governance, accessibility, quality of service and affordability         |  |  |  |
|             | Strengthen digital data protection, transparency, autonomy and trust                                                                                |  |  |  |
|             | Improve the accessibility and quality of digital services offered to the population                                                                 |  |  |  |
| Economic    | Implement new and innovative business models                                                                                                        |  |  |  |
|             | Increase income generation, productivity and value addition in economy                                                                              |  |  |  |
|             | Improve the regulatory framework and technical standards                                                                                            |  |  |  |

Getting the right mix of smart investment, skilled workforce, innovation capability and effective governance is not straightforward!

#### Recent DX public policy examples:

- 1. German Digital Strategy 2025 (2010);
- 2. Digital China Agenda (2014);
- 3. Brazilian Digital Transformation Strategy (2018);

### **1. Digital Transformation Prospects**

#### For companies:

- 1. Process improvement:
  - a. New markets exploitation;
  - b. Better value-chain integration;
  - c. Adaptability assurance;
- 2. Full digitization, through:
  - a. Complete redesign of products and services;
  - b. Adoption of holistic business models;
  - c. Establishment of closer interactions with suppliers;
  - d. Long-term partnerships with customers.

#### For customers/citizens/governments:

- 1. Better accessibility and quality of digital services and technologies;
- 2. Improved collaboration and innovation using digital tools;
- 3. Customer/citizen empowerment through monitoring and evaluation.

### **1. Digital Transformation Barriers**

#### Internal (weaknesses):

- 1. Lack of DX strategy, focus and/or ROI visibility;
- 2. Inadequate or overly heterogeneous company structure or culture;
- 3. Low adoption and high ownership costs of digital technologies;
- 4. Weak digital governance, privacy and security protection;
- 5. Perception of cannibalization of existing businesses (innovators dilemma);

#### External (threats):

- 1. Shortage of skills and qualified labor force;
- 2. Lacking or insufficient public infrastructure;
- 3. Missing or inadequate regulation and customer protection;
- 4. Poor access to funding, particularly by small and medium size businesses;
- 5. Lack of value recognition in societal gains (welfare).

### 2. Why DX? Digital Transformation Goals

#### <u>Complete Customer/User eXperience (CX/UX) orientation</u>:

- 1. Product customizability with enhanced usability;
- 2. Service simplification with full availability;
- 3. Differentiation of offer;
- 4. Uniqueness of customer experience;

#### **Operational eXcellence (OX)**:

- 1. Greater market penetration;
- 2. Revenue increase;
- 3. Time-to-market and cost reductions;
- 4. Asset allocation optimization;
- 5. Process simplification;
- 6. Green practices adoption.





### 2. Why DX? Digital Transformation Rationale

- Technology has been a root cause of <u>disruption</u> (Christensen studies in 1995).
- Leading companies are constantly ahead of their industries in developing and commercializing new technologies, as long as these technologies <u>address the</u> <u>next generation performance needs of customers</u>.
- These companies are rarely in the forefront of commercializing new technologies that do not initially meet the needs of mainstream customers and <u>appeal only to niche, small or emerging markets</u>.
- Thus, disruptive companies <u>explore the occupation gaps</u> left by market leaders, by developing technologies for customers in niche, small or emerging markets.
- This is a <u>source of innovation and market change</u>, which Christensen illustrates by using price and performance data from the HDD industry.

### 2. Why/Where? Digital Transformation Rationale

- For Christensen, a differentiated package of <u>performance attributes not yet</u> <u>valued by customers</u> is what characterizes disruptive to be technologies.
- Performance <u>attributes valued by existing customers evolve</u> at such a rapid rate that new technology can eventually invade established markets.
- In order to access whether some technology is of key importance for DX, one needs to <u>ascertain its initial market</u>, <u>attribute package</u>, <u>disruptive character</u> <u>and strategic significance</u>.
- Where? In mining and chemistry, agriculture and cattle breeding, food and beverage, automotive and electronics industries; services provided by governments and financial institutions; electricity, communications, gas and water utilities; healthcare and education institutions; retail, media and entertainment, logistics and transportation companies.



### 3. Case Study: DX at Telefonica

#### **Organization:** Telefonica Group (Spain and Brazil);

**Scope:** Vivo, the Brazilian subsidiary, developed Vivi, a social software robot to help customers formulate requests. The Telefonica group also deployed <u>Aura</u> in Brazil, a data integration platform with a cognitive assistant.

### Techniques/Technologies:

- 1. Agile squads model: Autonomous independent development teams;
- 2. AI tools: Microsoft Azure with the <u>Bots Framework</u> (software robot IDE) and <u>LUIS</u> (a natural language understanding tool);
- 3. Open innovation: Wayra accelerator of startups;

#### **Evaluation Metrics:**

- 1. Vivi: 10 million sessions opened, 94% solved in automated way, in 2018;
- 2. Wayra: hosted 64 startups between 2012 and 2018;
- 3. Yearly cost reductions:
  - Courier: US\$156 million;
  - Call centers: US\$313 million;



## 3. Case Study: DX in Hospitals

**<u>Organizations</u>:** Samaritano and Sirio-Libanes Hospitals (São Paulo, Brazil); **<u>Scope</u>:** 1. Secure electronic health records: management of patient data;

- 2. Integrated healthcare management systems: cover procedures, treatments, prevention, planning and decision;
- 3. Surgery robots: surgeries with high precision and freedom of movement;
- 4. Automated medicine distribution (just in Samaritano): selects, packs and distributes drugs throughout the hospital.

#### Techniques/Technologies:

- 1. Integrated healthcare management system: Tasy (Philips Healthcare);
- 2. Robotic surgical system: <u>Da Vinci Surgical System</u> (Intuitive Surgical);
- 3. Automated medicine distribution: <u>BoxPicker, PillPick and Pyxis</u> (Swisslog); **Evaluation Metrics:**
- 1. Surgery robots: minimize patient risks and improve surgery precision;
- Automated distribution: replaces 7 persons in dealing with 600 doses/hour.



### 3. Case Study: DX at Wolkswagen

#### **Organization:** Volkswagen Group (worldwide);

**Scope:** 1. Connected embedded sensors/actuators for better control;

- 1. ICT workflows integrated from IT systems to each car;
- 2. Vertical integration with PLCM, ERP, PPC and ME systems;
- 3. Horizontal integration with 4/5G and RFID tags in vehicles and parts.

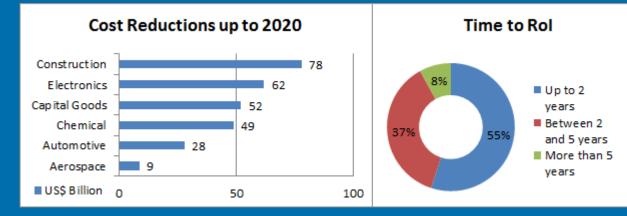
#### **Techniques/Technologies:**

- 1. Connected mechatronic systems: integrate mechanic and electronic systems (by Aptiv, Denso, Magna, Mahle and Schaeffler);
- 2. Electronic control units: ensure active vehicle control (by Bosch and ZF);
- 3. Infotainment systems: for passenger comfort (by Bosch and Continental);
- 4. 4/5G+RFID systems: vehicle/part communication/tracking (by <u>Kathrein</u>);
- 5. Robotic systems: assemble complete vehicles from parts (by Kuka);

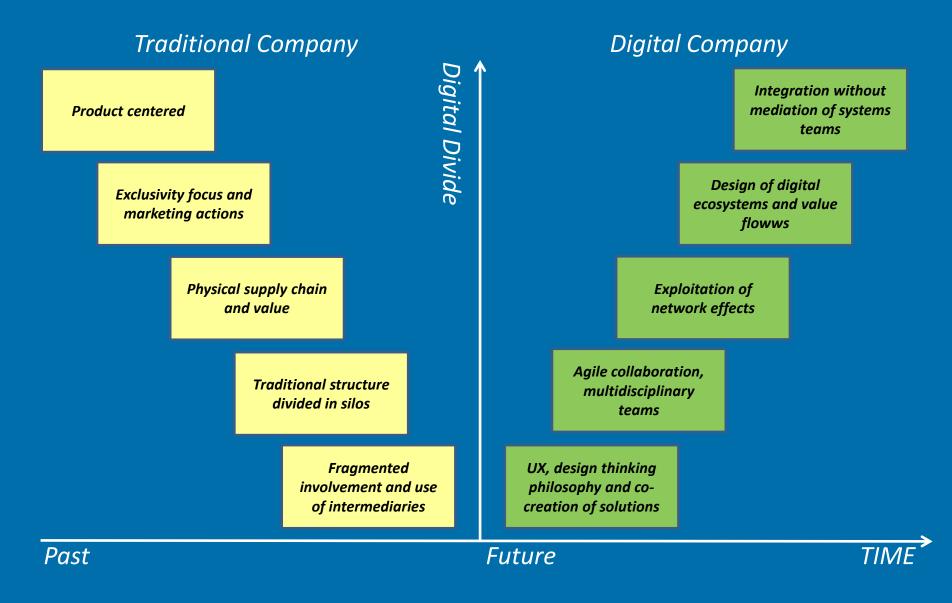
#### **Evaluation Metrics:**

- 1. Overall: 30% productivity gains in 3 years (2016) in Brazilian factories;
- 2. Products: All-electrical e-Delivery truck developed in Brazil for Ambev reducing gas emissions in 34%.

### 4. How to DX? The Outer Perspective


- The value chains that produce and deliver products/services do not matter anymore for customers, but <u>continuous value generation matters</u> through:
  - 1. Product customizations;
  - 2. Service simplifications;
  - 3. Unique customer experiences;
  - 4. New offerings.
- <u>Cooperation with customers</u> generates positive experiences, sentiments, convenience, comfort and well being, which are now all valued.
- <u>Disintermediation of suppliers</u> ensures faster product availability, better business integration and financial efficiency, defining an ecosystem economy.
- The competitive pressure generated by DX obliges customers and businesses to react to an ever-increasing digitization speed and <u>adapt accordingly</u>. <u>Not all</u> <u>stakeholders are prepared</u> to face this continuously changing environment.

### 4. How to DX? Strategies Before Technicalities


Companies have adopted standard <u>strategic management</u> practices to adapt to this new <u>highly competitive environment</u>, while better aligning business processes with adopted technologies:

- 1. Qualify: Make people awesome through creativity and entrepreneurship;
- 2. Simplify: Use best management, lean and sustainability practices;
- 3. Digitize: Use enabling technologies to generate value for customers;
- 4. Innovate: Find new ways to provide unique customer experiences;

#### Expected DX cost reductions and return on investment times by PwC (2017):



### 4. How to DX? Corporate Digital Transformation

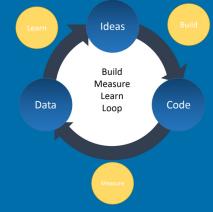


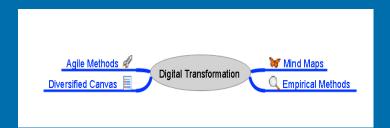
### 4. How to DX? Strategies Before Technicalities

- Some companies have reorganized themselves to <u>operate in dual mode</u>:
  - 1. Standard mode: Keeps traditional businesses and operations running;
  - 2. Disruptive mode: Seeks additional opportunities to exploit new markets and to innovate in technologies, processes, products or services.
- <u>Distinctive organizational patterns</u> are adopted to support DX modes of operation (which are typical in technology transfer processes):
  - 1. Building in-house;
  - 2. Buying and partnering;
  - 3. Incubating or accelerating;
  - 4. Investing;

### 4. How to DX? Where versus How


• A trade-off analysis is needed in deciding on Where versus How:


| Differentiator | Keep market<br>advantage            | No dependency<br>on external<br>parties             | Market<br>advantage<br>lost                      |  |
|----------------|-------------------------------------|-----------------------------------------------------|--------------------------------------------------|--|
| Qualifier      | No need<br>to reinvent<br>the whee! | Most cost effective<br>to use existing<br>solutions | Area of<br>innovation<br>interest                |  |
| Commodity      | Not cost<br>effective               | Why pay for<br>what is freely<br>available          | Most cost<br>effective to use<br>open innovation |  |
|                | Make                                | Buy                                                 | Share                                            |  |


⇒

### 4. How to DX? Digital Transformation Methods

- It has become customary to adopt diverse approaches in digital transformation efforts:
  - 1. Design thinking;
  - 2. (Big) Data analysis;
  - 3. Systems engineering;
  - 4. Lean development;
- Some respective methods are:
  - 1. Conceptual/mind maps;
  - 2. Empirical methods;
  - 3. Diversified canvases;
  - 4. Agile methods;







### 4. How to DX? Techniques Before Technologies



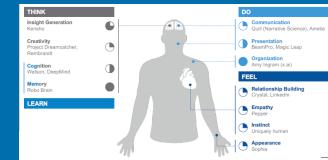
TheLeanStartUpProcess: www.theleanapps.com/digital-transformation-infographic/

### 4. How to DX? Technologies to Meet Demand

- The DX enabling technologies can be classified according to their span from the **visible and tangible** word to the **invisible** and **intangible** world.
- Examples of <u>tangible technologies</u>:
  - 1. Collaborative or autonomous equipment (robots and drones);
  - 2. 3D printers (eg. GE <u>ARCAM</u>).
- Examples of invisible technologies:
  - 1. Advanced sensors and actuators;
  - 2. Micro devices connected through the Internet of Things (IoT).
- Examples of intangible (software-based) technologies:
  - 1. Advanced/big data collection and analysis, with (cloud) storage;
  - 2. Convergent real-time interactivity and cognition;
  - 3. Augmented reality with visualization and simulation;
  - 4. Pattern recognition, machine learning and artificial intelligence.

### 4. How to DX? Technologies to Meet Demand

- Examples of underlying enabling methods, techniques and tools:
- 1. Techniques/platforms for agile/lean software development: IBM Bluemix;
- 2. Blockchain/Hyperledger for ensuring security and trust: Ethereum;
- 3. Micro-services and open APIs for software architectures: Google Apigee.
- Another classification is based on the nature of the technologies themselves: hardware, software and peopleware.




### 5. DX and Software/Requirements Engineering

- DX has not led to the development of radically new software technologies, but rather to new technology applications, due to the additional requirements that must be satisfied.
- Practical DX problems have become tractable by software only with effective development management, reusability and requirement engineering methods, techniques and tools.
- These Software Engineering branches with many interfaces, which deal with unproven metrics, have hard complexity bottlenecks and generate imprecise specifications respectively.
- Nowadays, approaches like DevOps using PaaS have ensured new revenues with higher productivity based on continuous software delivery processes.
- <u>The human factor is central</u> in addressing these issues, but the required key competences for problem solving, managing complexity and dealing with high levels of abstraction are often lacking or insufficient. Upskilling is a need.

### 5. SE/RE Skills and Capabilities for DX

- The OECD classifies the required skills of software developers in:
- 1. Generic: Use of office software, Internet navigation and browsing etc;
- 2. Specialist: Development of software, web-pages, cloud data and analytics;
- 3. Foundational : Social and emotional skills, digital literacy and critical thinking;
- 4. Complementary: Information processing, communicating with partners and customers, problem solving, planning in advance and adjusting quickly.
- The WEF classifies the required capabilities of software developers in:
- 1. Thinking : insight generation, creativity, cognition and memory;
- 2. Doing: communication, presentation and organization;
- 3. Feeling: relationship and trust building, appearance, empathy and instinct;
- 4. Learning: motivation and proactivity.



### **5. SE/RE Issues Due to DX**

- Due to DX, at higher organizational levels:
  - 1. Managers are expected to change their mindsets and abandon command and control, moving to more participatory and leadership oriented, risk taking and mistake tolerance approaches;
  - 2. Corporate leaders need to stimulate, direct and support their autonomous teams, while inspiring and learning together with them;
  - 3. Executives must be prepared to face business environments where (hyper)awareness, informed decision-making and fast execution rule.
- DX challenges traditional SE/RE education: now we need to teach how to learn!
- Apart from classroom and learning-by-doing, we see increased interest in:
  - 1. Continuous learning programs;
  - 2. Gamification and simulation exercises;
  - 3. Massive open online courses (MOOCs).

### **How This Work Was Developed**

Human ):

Approach

WEF

Competencies

Planning )o Execution Approaches

dob feel IMD (leadership) OECD

WEF)

Processes (Development)

Ownership

**Discussion Panel;** 1. Communications 2. Literature Review; Aglie development Advanced Interactivity 3. Knowledge Map; Big data & analytics Software Machine Intelligence Cognitive computing Technology driven Trust, security and privacy Purpose Computing Digital ecosystems People driven Definition (Knowledge) Technologies Hardware Customer-orientation Corporate Goals Operational excellence Peopleware of for Customers and Citzens Internal of for Companies Opportunities (Prospects) Mixed ( Cloud Expected Results for Society External Colaborative or autonomous equipment (Internal (Weaknesses) Challenges (Barriers) Advanced sensors ): C External (Threats) Industry Solutions Augmented reality ( Findings Instruments (Capabilities) 3D printing & prototyping Research Estonia (Positive) Evaluation Orange Australia (Negative) Organizations Communications Cisco Market Kathrein Solutions d Brazil Foresight Hardware )o d Germany Software China Digital Transformation (DX) Computing Peopleware ( Forecast Suppliers Govenment Integrators ): ( Industry Mixed ): Colaborative or autonomous equipment Media & Entertainment Advanced sensors b Retall Industry Solutions 3D printing & prototyping d Banks Diversified ) Credit Card Issuers Finance Omni-channel (channel convergence) Insurance providers Technology Electricity Business Models Examples (Deployment) Fintechs Business ): Communications Services Utilities Gas Regulation ) generic )o Water specialist ); Transportantion & Logistics OECD complementary Hospital Samaritano foundational Hospital Sillo-Libanés Healthcare BioArchitects Skills learn Education think ): Education

### **To Probe Further**



- 1. Christof Ebert and Carlos Henrique C. Duarte. Digital Transformation. *IEEE Software* 35(4):16-21. July 2018.
- 2. Joseph L. Bower and Clayton M. Christensen. Disruptive Technologies: Catching the Wave. *Harvard Business Review* 73(1):43-53. Jan. 1995.
- 3. Haluk Demirkan, James C. Spohrer and Jeffrey J. Welser. Digital Innovation and Strategic Transformation. IEEE *IT Professional* 18(6):14-18. Nov. 2016.
- 4. Brian Fitzgerald, Klaas-Jan Stolm, Sten Minör and Henrik Cosmo. *Scaling a Software Business: The Digitalization Journey*. Springer. 2017.
- 5. Michael Lewrick, Patrick Link and Larry Leifer. *The Design Thinking Playbook.* Verlag Vahlen. 2018.

\* The photos and videos in this presentation were obtained on the Internet.

# Digital Transformation and Software/Requirements Engineering

Thank You!



www.bndes.gov www.computer.org www.chcduarte.com



twitter.com/bndes
twitter.com/computersociety
twitter.com/carlosd22297781



www.linkedin.com/company/bndes
www.linkedin.com/company/ieee-computer-society
br.linkedin.com/in/carlos-henrique-duarte-613a0943



cduarte@bndes.gov.br carlos.duarte@computer.org

\* The assumptions, views and opinions in this paper are solely those of the author and do not necessarily reflect the official policy, strategy or position of any Brazilian government entity.